北纬高纬度森林地上生物量密度数据集提供了30米空间分辨率下的地上干木质生物量密度(AGBD)估计值

Aboveground Biomass Density for High Latitude Forests from ICESat-2, 2020

简介

该数据集以 30 米空间分辨率提供了北纬高纬度森林的地上干木质生物量密度 (AGBD) 估计值。它既可用于整个北方的测绘,也可用于填补 NASA 全球生态系统动态调查 (GEDI) 项目的北方空间数据空白。绘制森林地上生物量图对于了解、监测和管理森林碳储量以缓解气候变化至关重要。AGBD 估计值涵盖了高纬度北方森林的范围,并向南延伸至北方地区以外的 50 度纬度

摘要

Common Core

PublisherORNL_DAAC
Contact Nameundefined
Contact Emailmailto:uso@daac.ornl.gov
Bureau Code026:00
Program Code026:001
Public Access Levelpublic
Geographic Coverage-179.82 43.71 178.4 78.53
Temporal Applicability2019-06-01T00:00:00Z/2021-09-30T23:59:59Z
ThemeABoVE, geospatial
Languageen-US
HomepageAboveground Biomass Density for High Latitude Forests from ICESat-2, 2020, https://doi.org/10.3334/ORNLDAAC/2186
Issued2024-12-02T00:00:00.000Z
Unique IdentifierC2756302505-ORNL_CLOUD
Last Update2024-12-02T18:41:21.000Z

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="Boreal_AGB_Density_ICESat2_2186",
    cloud_hosted=True,
    bounding_box=(-179.82, 43.71, 178.4, 78.53),
    temporal=("2019-06-01", "2021-09-30"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

网址推荐

 知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值