简介
在复杂景观中,土地覆盖分类受到作物/植被类型固有短距离转换的限制,特别是在小农户农业系统中。地球观测影像的可用性和可获取性不断提高,为评估土地覆盖现状和监测其变化提供了重大机遇,但解锁这种能力取决于相关地面真实数据的可用性,以校准和验证分类算法。在撒哈拉以南非洲的农业系统中,迫切需要的空间明确地面真实数据往往不可用,这限制了相关分析工具的开发,以监测农田动态或生成关于农业系统的[近]实时见解。本教程旨在为对在 Google Earth Engine 环境中实施土地覆盖分类流程感兴趣的用户提供快速指南,使用地面真实数据和可用的 Sentinel-2 TOA 光谱波段。目标是提供一个易于实施的流程,研究人员和分析人员可以快速将其应用于农田分类。 随着在国家和区域层面收集丰富空间地理数据的工作投入越来越多,本教程可以帮助生成玉米和其他作物类型的即时/及时洞察。
本土地覆盖分类是基于收集的数据实施的,这些数据是在一个为期多年的项目中收集的(https://tamasa.cimmyt.org/),该项目专注于推进基于玉米的农业系统的数字农业创新决策支持。因此,在此分析工作流程中,地面真实数据富含玉米农田位置,而在研究地理区域内其他作物类型的数据点则相对较少。考虑到这一限制,本分类工具和本教程的范围仅限于数据收集期间(即 2017 年)玉米地(即玉米与非玉米耕作)的二分类。