自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(103)
  • 资源 (1934)
  • 收藏
  • 关注

原创 GEE教程:利用DEM数据计算特定区域的洪水风险指数

首先,我们需要定义一个感兴趣的区域。以下代码段创建了一个多边形,表示我们要分析的地理区域。通过以上步骤,我们成功地计算了特定区域的洪水风险指数,并将结果可视化。使用Google Earth Engine,我们能够利用丰富的地理数据进行环境监测和分析,为决策提供科学依据。希望这个博客能帮助您理解如何在Google Earth Engine中计算洪水风险指数!

2025-03-31 17:30:02 337 1

原创 CAL_IIR_L3_GEWEX_Cloud-Standard-V1-00:全球能量和水循环实验云数据产品

CAL_IIR_L3_GEWEX_Cloud-Standard-V1-00 是云-气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) IIRLevel 3 全球能量和水循环实验 (GEWEX) 云,标准版本 1-00 数据产品。该产品的数据是使用 CALIPSO 成像红外辐射计 (IIR) 仪器收集的。该产品报告了均匀二维 (2D) 空间网格上 IIR 云有效半径和水路径平均值及直方图的全球分布。该产品的设计遵循 GEWEX 云评估的一般指导。

2025-03-31 17:18:35 651

原创 GEE图表:基于JRC/GHSL/P2023A/GHS_POP数据和指定研究区的人口增长趋势可视化分析

通过以上步骤,我们展示了如何使用 Google Earth Engine 进行人口数据的可视化和分析。这些工具使我们能够深入了解人口增长的动态变化,并为未来的研究提供了基础。希望这篇博客能够帮助你更好地掌握这些技术!// 使用 Google Earth Engine 进行人口增长分析// 1. 定义研究区域// 2. 获取国家边界// 将国家边界添加到地图上// 设置地图中心// 3. 加载人口数据// 4. 处理人口数据});// 5. 打印人口数据集的大小。

2025-03-31 08:00:00 427

原创 GEE案例:利用ESRI的全球土地覆盖数据集和其他矢量数据,进行森林、道路等地物的分析(进行纯净森林的提取过程)

在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行土地覆盖分类和水体提取的JavaScript代码。该代码利用ESRI的全球土地覆盖数据集和其他矢量数据,进行森林、道路等地物的分析。

2025-03-31 08:00:00 306

原创 GEE训练教程:利用Sentinel-2影像计算水体深度计算和可视化分析

首先,我们定义了一个多边形作为我们的感兴趣区域(Geometry)。] */通过这段代码,我们成功计算了水深并进行了可视化。此方法对于水资源管理和环境监测具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行水深计算和可视化!

2025-03-30 18:53:55 86 1

原创 云气溶胶激光雷达和红外探路者卫星观测数据版本更新至1-13

CAL_IIR_L1-Prov-V1-13 数据是云气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) 红外成像辐射计 1B 级辐射数据,临时版本 1-13。该产品的版本从 1-12 更改为 1-13,以适应 CALIPSO 生产集群操作系统的变化。成像红外辐射计 (IIR) 1B 级数据产品包含地理定位、校准辐射的半轨道。图像数据被配准到以激光雷达轨道为中心的 1 公里网格。1B 级数据产品以 HDF 编写。

2025-03-30 18:50:54 724

原创 GEE案例:利用 Landsat 数据和 Google Dynamic World 数据集进行热岛效应 (UHI)的分析和可视化

);通过以上步骤,我们成功使用 Google Earth Engine 计算了特定区域的城市热岛效应。这一过程展示了如何利用 Landsat 数据和 Google Dynamic World 数据集进行热岛效应的分析和可视化。希望这篇博客能帮助你理解如何使用 GEE 进行城市热岛效应的研究。// 1. 加载国家边界数据// 2. 定义感兴趣区域 (ROI)});// 3. 设置地图中心并添加图层// 4. 定义时间范围// 5. 获取城市区域数据。

2025-03-29 10:15:33 142 1

原创 CALIPSO夜间验证飞行在百慕大进行,NASA兰利HSRL-2仪器收集校准验证数据

CALIPSO 夜间验证飞行 (CALIPSO-NVF) 空中部署于 2022 年 8 月在百慕大进行。目标是使用 NASA 兰利高光谱分辨率激光雷达 (HSRL-2) 对 CALIPSO 卫星进行一系列夜间飞行。NASA 兰利 HSRL-2 仪器的空中测量对于验证 CALIPSO 激光雷达的校准精度以及获取用于其气溶胶剖面检索的气溶胶光学特性信息至关重要。通过在 CALIPSO 地面轨道下飞行,HSRL-2 可以独立测量激光雷达衰减后向散射,具有更高的信噪比。

2025-03-29 10:12:34 704

原创 GEE土地分类:使用 Google Earth Engine 中MODIS数据进行土地覆盖分类和面积计算并可视化

/ 将国家边界添加到地图上// 设置地图中心通过以上步骤,我们展示了如何使用 Google Earth Engine 进行土地覆盖分类和面积计算。这些工具使我们能够深入了解土地覆盖的分布,为环境监测和管理提供了重要的数据支持。希望这篇博客能够帮助你更好地掌握这些技术!

2025-03-29 08:00:00 99

原创 GEE训练教程:利用JRC GHSL(全球人类住区数据集)来分析特定区域在1975年和2020年的居住区面积变化

var roi =] */通过这段代码,我们成功分析了特定区域在1975年和2020年的居住区面积变化,并生成了可视化图表。这种方法对于城市化进程的监测和研究具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行城市化分析!

2025-03-28 19:07:44 56 1

原创 欧盟 CEC 环境计划支持下的中尺度气象建模计划首个阶段

获得了巴西朗多尼亚州植被、土壤和地形的地表参数数字地图,覆盖南纬 13-8 度和西经 65-60 度之间的 5x5 度区域。通过数字化现有的 1: 1,000,000 地图,绘制了自然景观结构的数字地图。卫星数据提供了有关人类活动导致地表最近变化的信息。这项测绘工作是中尺度气象建模计划(Calvet 等人,1997 年)的第一步,该计划针对森林覆盖和森林砍伐的西南亚马逊地区(巴西朗多尼亚州)。这项工作是在欧盟 CEC 环境计划支持的研究计划(CABARE)框架下进行的。Data Files。

2025-03-28 19:04:02 731

原创 GEE案例:基于ECMWF/ERA5_LAND/MONTHLY_AGGR数据分析某个特定地区(葡萄牙)的1950-2024年土地表面温度(LST)变化和时序可视化结果

首先,我们定义一个点位置,该位置将是我们分析的中心。// 将国家边界添加到地图// 中心化地图通过上述步骤,我们成功地分析了某个特定区域的土地表面温度变化,并生成了相应的时间序列图表和图例。这一过程展示了如何利用 Google Earth Engine 强大的数据处理和可视化能力进行环境监测和分析。如果你对代码或过程有任何疑问,请随时留言讨论!// 定义分析区域// 将国家边界添加到地图// 中心化地图// 设置时间范围// 获取温度数据// 创建时间序列集合}))

2025-03-28 08:00:00 114

原创 GEE教程:进行植被健康指数(VHI)计算和NDVI(归一化植被指数)、TCI(热条件指数)和VCI(植被条件指数)的计算

首先,我们定义了一个多边形作为我们的感兴趣区域(ROI)。}));通过这段代码,我们成功地计算了植被健康指数,并可视化了相关数据。这种方法可以帮助我们监测和分析植被健康状况,为环境保护和农业管理提供重要参考。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行遥感数据分析!

2025-03-27 22:04:17 167

原创 通过对2007年度墨西哥湾流测量数据的分析,有助于我们更深入了解海流的运动规律和对环境的影响吗?

"Measurements across the Gulf Stream in 2007"是一个关于2007年度对墨西哥湾流进行测量的数据集。该数据集包含了跨越墨西哥湾流的多种变量的观测数据,旨在帮助科研人员了解该海流在2007年的特征和变化。通过这些数据,研究人员可以分析海流的温度、盐度、流速、携带物质等信息,从而更深入地了解该海流的运动规律以及对周围环境的影响,为海洋科学研究和气候变化领域提供重要参考。

2025-03-27 21:54:33 1004

原创 GEE案例:基于欧空局JRC/GHSL/P2023A/GHS_BUILT_C全球人类定居数据进行统计和分类(西班牙为例)

/ 将国家边界添加到地图// 中心化地图'开放空间,低植被表面', '开放空间,中植被表面', '开放空间,高植被表面','开放空间,水面', '开放空间,道路表面', '建筑空间,住宅,建筑高度 <= 3m','建筑空间,住宅,3m < 建筑高度 <= 6m', '建筑空间,住宅,6m < 建筑高度 <= 15m','建筑空间,住宅,15m < 建筑高度 <= 30m', '建筑空间,住宅,建筑高度 > 30m',

2025-03-27 08:00:00 52 1

原创 GEE训练教程:基于sentinel-2影像的归一化浊度指数(NDTI)的计算可视化

var roi =

2025-03-26 22:27:20 102

原创 海岸高采集速率辐射计数据集:支持环境研究的宝贵资源

这个数据集包含了海岸高采集速率辐射计所收集的数据,用于支持创新的环境研究项目。这些数据提供了海岸地区不同时间点的辐射测量值,可以帮助研究人员深入了解海岸地区的辐射情况,从而开展相关的环境研究工作。

2025-03-26 22:23:14 1484

原创 GEE案例——利用ERA5-Land数据进行可视化分析和不同气候面积统计以及NDVI的时序变化情况

*/通过这段代码,我们展示了如何使用 Google Earth Engine 进行气候数据的分类分析以及 NDVI 的时间序列分析。这些步骤为理解气候变化及其对植被的影响提供了有力的工具。希望这篇博客能够帮助你更好地掌握这些技术!

2025-03-26 08:00:00 96 1

原创 GEE训练教程:基于Landsat全系列影像的分析河流变化的代码解析和可视化

在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行Landsat影像分析的JavaScript代码。该代码主要用于识别和分析特定区域内的河流变化。首先,我们定义一个多边形作为我们的感兴趣区域(ROI):2. 加载Landsat影像数据集接下来,我们加载不同版本的Landsat影像数据集,包括Landsat 5、7、8和9:3. 设置地图中心我们将地图中心设置为我们的感兴趣区域:4. 定义年份列表我们定义一个年份列表,以便后续分析:5. 过滤影像集合的函数我

2025-03-25 13:35:18 55

原创 阿拉斯加和加拿大火灾位置及燃烧分数数据集介绍

该数据集提供了 2001-2019 年期间阿拉斯加和加拿大火灾位置和相关每像素燃烧分数的年度网格估计值,空间分辨率约为 500 米。还提供了使用燃烧面积图和现场数据对 ABoVE 扩展域内同一时期的碳燃烧和燃烧深度进行网格预测。通过 MODIS 衍生的活跃火灾产品检测火灾位置和燃烧日期 (DOB)。燃烧面积主要使用差分归一化燃烧比 (dNBR) 算法从更精细尺度的 Landsat 影像中估算,并升级到大约 500 米的 MODIS 分辨率。

2025-03-25 13:31:22 564

原创 GEE碳储量分析:Sentinel-2多光谱数据与生物量碳密度数据(阿尔巴尼亚沿海森林区),构建稳健线性回归模型实现森林碳储量估算。

本文以阿尔巴尼亚沿海森林区为研究对象,利用Google Earth Engine平台,结合Sentinel-2多光谱数据与生物量碳密度数据,构建稳健线性回归模型实现森林碳储量估算。本方法可为区域碳汇监测提供高效解决方案。通过本方法,研究人员可在3小时内完成传统方法需要3个月的碳储量制图工作,为应对气候变化提供关键数据支持。

2025-03-25 08:00:00 164 2

原创 GEE图表:基于ERA5气象数据进行风速分析的时序分析和可视化

在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行风速分析的JavaScript代码。该代码主要用于计算特定区域内的风速,并导出结果为CSV文件。首先,我们定义一个多边形作为我们的感兴趣区域(ROI):2. 加载ERA5气象数据集接下来,我们加载ERA5气象数据集,选择风速的u和v分量,并过滤时间范围为2010年至2024年:3. 计算风速我们使用函数来计算风速,风速的计算公式为:[\text{风速} = \sqrt{(u^2) + (v^2)}]以下是计算风

2025-03-24 20:02:50 428

原创 GEE训练教程:使用MODIS NDVI数据计算干旱区面积以山西省为例

通过这段代码,我们成功计算并可视化了特定区域的植被状况指数(VCI),并分析了干旱状况。这种方法对于监测干旱及其影响具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行干旱分析!

2025-03-24 20:01:05 93

原创 阿拉斯加和加拿大育空地区火灾统计:2001-2018 年数据

该数据集提供了美国阿拉斯加、加拿大育空地区和西北地区北方地区火灾的每日烧毁面积、碳排放量和不确定性以及每日火灾点火位置的估计值。数据分辨率为 500 米,涵盖 2001-2018 年的 18 年时间。烧毁面积是通过将阿拉斯加和加拿大大型火灾数据库的火灾范围数据与中分辨率成像光谱仪 (MODIS) 集合 6 的地表反射率和活跃火灾数据相结合得出的。每像素碳消耗量是根据现场热原消耗估计值与几个环境变量之间的统计关系估算出来的。

2025-03-24 19:56:58 904

原创 GEE案例:基于Landsat8数据求取NDSI积雪的面积(已经根据NDWI去除了水体范围)

/ 西藏某矩形研究区(坐标可替换)// 地图中心定位---### 2.2 云层处理技术**Landsat 8云掩膜函数**:// 利用QA_PIXEL波段识别云与阴影// 位掩码操作// 辐射定标处理// 光学波段定标// 热红外定标// 应用云掩膜技术要点QA_PIXEL波段位掩码组合(Bits 0-4对应填充值/云/卷云/阴影)地表反射率转换公式来自USGS官方文档。

2025-03-24 08:00:00 132

原创 GEE训练教程:使用Google Earth Engine进行特定区域的气溶胶光学深度(AOD)

首先,我们定义一个点作为我们的感兴趣区域(ROI),并使用国家边界进行过滤。// 您可以使用国家边界,并仅对您的国家运行此代码// 将国家边界添加到地图接下来,我们将地图中心设置为该点,并调整缩放级别。// 可以通过此函数更改缩放级别通过以上步骤,我们成功地分析了特定区域的气溶胶光学深度(AOD),并计算了气溶胶出现的频率。这一过程展示了如何利用Google Earth Engine进行遥感数据分析,为环境监测和管理提供了有力的支持。希望本博客能帮助您了解如何在GEE中进行AOD分析!

2025-03-23 11:08:21 59

原创 浮标数据揭示了北大西洋海域海洋生态系统的健康状况,是否存在一些潜在的问题或挑战?

Bowdoin浮标测量数据集包含了从北大西洋海域的一个浮标收集到的数据。这些数据包括海水温度、盐度、氧含量等多个参数的测量结果。这些浮标测量数据可以帮助科学家们更好地了解海洋环境的变化,监测海洋生态系统的健康状况,以及预测海洋气候的变化。

2025-03-23 11:01:23 867

原创 GEE图表:分析Sentinel-1的合成孔径雷达(SAR)图像(上升和下降轨迹)时序图表的分析

在这里,geometry是我们之前定义的感兴趣区域。我们将地图的缩放级别设置为9,以便更好地查看该区域。

2025-03-23 08:00:00 1161

原创 GEE训练教程:使用Google Earth Engine(GEE)来分析特定区域的矿物指标,包括铁氧化物和粘土矿物

首先,我们需要定义一个感兴趣的区域(几何体)。在这里,我们使用一个点来表示该区域。通过以上步骤,我们成功地分析了特定区域的铁氧化物和粘土矿物指标,并计算了相关的统计值。使用Google Earth Engine,我们能够利用丰富的遥感数据进行矿物资源的监测和分析,为地质研究和资源管理提供科学依据。

2025-03-22 10:10:29 56

原创 如何利用火灾数据和衍生指标来研究北极地区森林的生态系统?

该数据集提供的产品描述了北欧亚大陆和北美极地森林火灾造成的短期和长期生态系统变化。数据包括火灾强度(火灾辐射功率;FRP)、春季反照率增加、树木覆盖率下降、归一化燃烧率、归一化差异植被指数和地表温度,以及三个衍生的火灾指标:树冠烧焦、植被破坏和火灾引起的树木死亡率。长期变化由火灾发生 5-12 年后确定的平均反照率、火灾发生 5-7 年后树木覆盖率平均下降百分比和年平均燃烧百分比表示。数据涵盖 2001-2013 年期间,以四分之一、半度和一度分辨率提供 40 至 80 度北极地区内的北方森林。

2025-03-22 10:03:43 913

原创 GEE案例:基于 Sentinel-2 数据计算 FAI、NDVI、CHLA 和 NDCI 指数(叶绿素和海藻遥感反演)并进行统计(平均值和标准差等)和下载

在遥感技术中,浮游藻类指数(FAI)、归一化植被指数(NDVI)、叶绿素 a(CHLA)浓度以及归一化差异叶绿素指数(NDCI)是监测水体和植被状况的重要指标。本文将介绍如何使用 Google Earth Engine(GEE)平台,基于 Sentinel-2 数据,计算这些指数,并进行逐月统计分析。。

2025-03-22 08:00:00 267

原创 Google Earth Engine——合理解决GEE中大区域范围sentinel影像下载(tif)过程中导出到Google Drive中出现多个文件的问题

var roi =] */:定义了一个多边形(实则是矩形),传入的坐标是一组四个顶点(左上、左下、右下、右上)。:将 ROI 以红色图层的形式添加到地图。:将地图视角居中到roi。

2025-03-22 01:30:00 107

原创 GEE训练教程:使用MODIS表面反射率数据,计算归一化水体指数(NDWI),并通过Otsu方法确定水体阈值

首先,我们定义一个多边形作为我们的感兴趣区域,并将其添加到地图中。通过以上步骤,我们成功地分析了特定区域的水体分布,计算了归一化水体指数(NDWI),并使用Otsu方法确定了水体阈值。这一过程展示了如何利用Google Earth Engine进行水体监测,为水资源管理和环境保护提供了重要的支持。希望本博客能帮助您了解如何在GEE中进行水体分析!

2025-03-21 12:37:38 286

原创 ABoVE:来自 Landsat 的北方森林生物群落树冠覆盖率和林分年龄,1984-2020 年

这个数据集是关于1984年至2020年间在北部森林生物群落中利用Landsat卫星数据获取的树冠覆盖率和林龄信息的研究。数据集来自ABoVE计划(Arctic-Boreal Vulnerability Experiment),提供了关于该地区树木覆盖率变化和林木生长年龄的宝贵信息。这些数据对于研究北部森林生态系统的动态变化和应对气候变化等环境挑战具有重要意义。

2025-03-21 12:32:03 674

原创 GEE图表:分析特定区域的海表叶绿素浓度(Chlorophyll-a, Chl-a)的时间序列变化

首先,我们定义了一个点作为感兴趣区域(ROI),即我们要分析的区域。// 将国家边界添加到地图// 将地图中心设置为该点,缩放级别为4通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的海表叶绿素浓度时间序列变化。通过地图可视化和时间序列图,我们可以直观地观察到叶绿素浓度的空间分布和时间变化趋势。这些数据对于研究海洋生态系统健康、浮游植物动态以及气候变化的影响具有重要意义。

2025-03-21 08:00:00 506

原创 GEE训练教程——对于数据源中的每个零值像素,获取其与给定方向上最近的非零值像素的距离

GEE训练教程——对于数据源中的每个零值像素,获取其与给定方向上最近的非零值像素的距离。

2025-03-20 10:26:19 959

原创 北纬高纬度森林地上生物量密度数据集提供了30米空间分辨率下的地上干木质生物量密度(AGBD)估计值

该数据集以 30 米空间分辨率提供了北纬高纬度森林的地上干木质生物量密度 (AGBD) 估计值。它既可用于整个北方的测绘,也可用于填补 NASA 全球生态系统动态调查 (GEDI) 项目的北方空间数据空白。绘制森林地上生物量图对于了解、监测和管理森林碳储量以缓解气候变化至关重要。AGBD 估计值涵盖了高纬度北方森林的范围,并向南延伸至北方地区以外的 50 度纬度PublisherORNL_DAACundefined026:00026:001publicThemeLanguageen-US。

2025-03-20 10:21:05 664

原创 GEE土地分类——对波斯湾地区的珊瑚礁生态系统进行分类,并计算各类生态系统的面积

首先,我们定义了一个多边形作为感兴趣区域(ROI),即我们要分析的区域。通过以上步骤,我们成功地使用Google Earth Engine对波斯湾地区的珊瑚礁生态系统进行了分类,并计算了各类生态系统的面积。最终的结果通过饼图和图例展示,帮助我们更好地理解该区域的珊瑚礁生态系统分布情况。

2025-03-20 08:00:00 123

原创 GEE训练教程——Google Earth Engine分析并可视化了特定区域的土壤氮含量

首先,我们定义一个包含多个点的几何体,这些点代表我们感兴趣的区域。通过以上步骤,我们成功地使用Google Earth Engine分析并可视化了特定区域的土壤氮含量。希望这个示例能帮助你理解如何使用GEE进行地理空间数据分析!

2025-03-19 11:37:18 182

原创 植被生长与环境因素关联性研究:北部森林数据集分析

这个数据集涵盖了1985年到2019年的时间范围内,在北部森林生物群系中,利用Landsat卫星测量的植被绿度趋势。数据集收集了关于植被覆盖变化的信息,可以帮助研究人员了解在这一时期内,北部森林地区植被的生长和变化情况。

2025-03-19 11:33:20 844

【地球科学与遥感技术】基于Google Earth Engine的湖泊水体面积动态监测与可视化:以犹他州鲍威尔湖为例

内容概要:本文档介绍了一项基于Python的地理空间数据分析项目,主要利用Google Earth Engine(GEE)API、geemap、pandas和matplotlib等工具对犹他州鲍威尔湖地区的Landsat卫星图像进行处理和可视化。具体步骤包括:安装必要的Python包、初始化GEE API、定义研究区域边界、创建并筛选 Landsat 图像集合、应用云掩膜和计算归一化差异水体指数(NDWI)、生成水体分类地图、计算水域面积时间序列以及将数据组织成Pandas DataFrame并绘制时间序列图。; 适合人群:具备一定Python编程基础和地理信息系统(GIS)知识的研究人员和技术人员。; 使用场景及目标:① 利用GEE API获取并处理卫星遥感数据;② 分析特定区域的水域变化情况;③ 可视化展示遥感数据分析结果,如水域面积随时间的变化趋势;④ 提供数据驱动的决策支持,如水资源管理和环境监测。; 其他说明:此项目需要确保已正确配置Google Cloud项目,并且安装了geemap、matplotlib和ipykernel等额外依赖包。此外,建议在Jupyter Notebook环境中运行代码,以便更好地利用交互式元素。

2025-06-06

NEON-Field-Site-Metadata-20250604.csv

Quantifying ecological processes over time and across the U.S. requires a complex sampling design. NEON's 47 terrestrial and 34 freshwater aquatic sites support studies that characterize ecological change and link individual local measurements to site-level and continental-scale questions about ecological change. From habitats spanning deserts to tropical forests and from tiny streams to lakes, each site has unique characteristics.

2025-06-05

NEON ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD).pdf

This document details the algorithms used for creating the NEON Level 3 ecosystem structure data product (NEON.DOM.SITE.DP3.30015.001) from Level 1 data, and ancillary data (such as calibration data), obtained via instrumental measurements made by the Light Detection and Ranging (LiDAR) sensor on the Airborne Observation Platform (AOP). It includes a detailed discussion of measurement theory and implementation, appropriate theoretical background, data product provenance, quality assurance and control methods used, approximations and/or assumptions made, and a detailed exposition of uncertainty resulting in a cumulative reported uncertainty for this product.

2025-06-05

竹山茶北亚热带低中山生境保护与可持续发展案例数据集

湖北省竹山县位于鄂西北秦巴山区,地处南北气候过渡带,迄今有千年的种茶历史。调查研究结果表明,竹山59.38%的区域位于500–1,000 m的低山,65%的区域坡度多在25°以下,具有927 mm年降水量和16 ℃的年均气温,除了7月之外全年日均日照时数小于6 h。经检测,茶园土壤和水质的各项指标均符合国家标准,均未检出农残。竹山茶包括红茶和绿茶。其中,竹山绿茶具有高茶多酚、高儿茶素;竹山红茶具有高茶黄素和高聚酯儿茶素。截止2024年底,竹山户籍人口44万人。其中,茶农人口达20万人。竹山茶业综合产值突破70亿元,占全县总GDP一半以上。竹山茶北亚热带低中山生境保护与可持续发展案例数据集内容包括:(1)案例区范围数据;(2)自然地理环境数据(高程分类数据、坡度分类数据、气候数据、土壤数据、水质数据、植被数据);(3)人口、经济、管理和文化数据;(4)茶品质和农残化验数据;(5)照片数据。数据集存储为.shp、.xlsx、.tif、.docx、.jpg格式,一共由56个数据文件组成,数据量为548 MB(压缩为1个文件153 MB)。刘苏峡, 范奇, 李叶云, 任图生, 张小福, 孟迪, 姚亭亭, 杨丽虎, 马军花, 熊应标, 丁葛, 周作明, 高兴恕, 杨大明, 陈必奇, 王兴明, 张永毅, 李佳荫, 沈义锋, 陈墩桥, 林航, 杨松, 李容, 郭艳, 李明宏, 张进, 杨才华, 成伟, 张成. 竹山茶北亚热带低中山生境保护与可持续发展案例数据集[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2025.

2025-06-05

【地球引擎编程】基于Python的CHIRPS降雨数据分析与CSV导出:西哈努克市1981至2025年降雨数据处理脚本

内容概要:本文档展示了如何利用Google Earth Engine (GEE) 平台获取并处理特定地理位置的长期降雨数据。具体步骤包括初始化GEE环境、设定地理坐标点(如柬埔寨西哈努克市)、加载并筛选UCSB-CHG/CHIRPS/DAILY数据库中1981年至2025年的每日降水记录,通过自定义函数将影像数据转化为特征集,最终以CSV格式导出到Google Drive中指定文件夹。整个过程中还实现了对任务执行状态的实时监控与反馈机制,确保数据处理流程的透明性和可靠性。; 适合人群:对地理信息系统、气候数据分析感兴趣的科研人员或学生,以及需要进行长时间序列气象数据研究的专业人士。; 使用场景及目标:①研究特定区域多年降水变化趋势;②为农业、水利等领域的决策提供科学依据;③作为教学案例帮助理解遥感数据处理流程。; 阅读建议:建议读者提前注册并熟悉Google Earth Engine平台的基本操作,同时掌握Python编程基础,以便更好地理解和应用文中提供的脚本代码。

2025-06-05

水文分析基于Python的柬埔寨西哈努克市降雨强度频率分析:IDF曲线绘制与数据处理

内容概要:本文档《gee scripts.txt》主要介绍了利用Python进行降雨数据分析并绘制降雨强度-历时-频率(IDF)曲线的过程。首先导入必要的库(如pandas、numpy等),然后读取并预处理了2000年至2025年柬埔寨西哈努克市的降雨数据,将时间序列数据按照30分钟间隔进行平均处理。接着定义了多个降雨历时,并提取了各年内对应历时下的最大降雨量。随后,对这些数据进行了Gumbel分布拟合,计算了不同重现期下的降雨量,并转换成降雨强度(mm/h)。最后,绘制了IDF曲线图,并将结果保存为Excel文件。 适合人群:气象学研究人员、水利工程技术人员以及对降雨数据分析感兴趣的读者。 使用场景及目标:①研究特定地区的历史降雨模式及其统计特性;②为城市排水系统设计提供科学依据;③评估极端天气事件的风险。 阅读建议:由于本文档涉及较多的数据处理与统计分析方法,建议读者具备一定的Python编程基础和统计学知识,同时可以参考相关文献以加深理解。此外,在实际操作时应注意检查数据的质量和适用性,确保分析结果的有效性和可靠性。

2025-06-05

【地球引擎应用】基于Python的ALOS DSM数据处理与导出:西哈努克省高程影像提取系统实现

内容概要:本文介绍了使用Google Earth Engine (GEE) 导出高程数据的具体步骤。首先初始化Earth Engine并加载ALOS DSM数据集,将其合成为单张影像。然后定义柬埔寨西哈努克省为研究区域,并选择DSM波段进行裁剪。接下来配置导出任务,将处理后的影像以GeoTIFF格式导出到Google Drive指定文件夹,设置分辨率为12.5米,最大像素数量为1e13。最后启动导出任务并通过循环检查任务状态,直到任务完成或失败为止。; 适合人群:对地理信息系统和遥感数据处理感兴趣的科研人员、地理信息开发者以及相关领域的学生。; 使用场景及目标:①需要获取特定区域高精度DEM数据的科研项目;②学习如何使用Google Earth Engine API进行数据处理和导出;③掌握Python脚本编写与GEE结合的应用技巧。; 阅读建议:读者应具备基本的Python编程能力和地理信息系统基础知识,在实践过程中注意API密钥管理和配额限制,同时可以参考官方文档进一步探索更多功能。

2025-06-05

【地球引擎编程】基于GEE的柬埔寨西哈努克市降水数据分析:2000-2025年IMERG数据提取与导出

内容概要:本文介绍了如何使用Google Earth Engine (GEE) 获取并处理柬埔寨西哈努克市2000年至2025年期间的GPM IMERG最终降水数据。首先初始化Earth Engine并定义目标位置(西哈努克市)的地理坐标。然后加载GPM IMERG最终降水数据集,并筛选指定日期范围内的数据。接着定义一个函数将影像转换为特征,提取降水量并在每个影像上应用该函数。最后配置并启动导出任务,将处理后的数据导出到Google Drive,并通过循环监控任务状态直至完成或失败。; 适合人群:对地球科学、气象学或遥感技术有一定了解的数据分析师、科研人员或学生。; 使用场景及目标:①从GEE获取特定区域和时间范围内的气象数据;②将影像数据转换为特征数据,便于进一步分析;③掌握如何配置和监控GEE导出任务到Google Drive。; 阅读建议:在学习过程中,建议读者先熟悉Google Earth Engine平台的基本操作以及Python编程基础,以便更好地理解和实践本文中的代码示例。同时,可根据自身需求调整代码中的参数设置,如地理位置、时间范围等。

2025-06-05

【遥感影像处理】基于Google Earth Engine的Landsat 9影像分析与分类:地表温度及植被指数计算和监督非监督分类应用

内容概要:本文档详细介绍了使用Google Earth Engine (GEE) 处理和分析 Landsat 9 卫星影像的工作流程。首先,通过设定时间范围(2024年6月1日至10月1日)和感兴趣区域(AOI),加载并筛选了 Landsat 9 影像数据集。接下来,对影像进行了预处理,包括应用缩放因子、裁剪到 AOI、计算地表温度(LST)、归一化植被指数(NDVI)和归一化建筑指数(NDBI)。随后,将处理后的影像用于监督分类(随机森林)和非监督分类(K-Means聚类),并评估了分类器的性能。最后,将非监督分类结果导出到 Google Drive。 适合人群:具备遥感数据分析基础,特别是对卫星影像处理和机器学习有一定了解的研究人员和技术人员。 使用场景及目标:①掌握 Landsat 9 数据的获取、预处理和分析方法;②学习如何利用 GEE 平台进行影像分类(包括监督和非监督分类);③了解如何导出处理结果用于进一步研究或发布。 阅读建议:本文档提供了完整的代码示例,建议读者结合实际操作,逐步运行代码,理解每个步骤的功能,并根据需要调整参数以适应不同的研究需求。同时,注意代码中的注释和错误修正,如拼写错误等。

2025-06-05

【地理信息系统】基于Google Earth Engine的影像处理: pansharpening技术在遥感图像中的应用与可视化

内容概要:本文档详细介绍了如何利用Google Earth Engine (GEE) 脚本对指定区域(AOI)内的卫星图像进行处理,包括过滤、计算中值、裁剪、色彩空间转换和锐化等操作。首先,通过定义兴趣区域并筛选出2024年的图像集合,然后计算这些图像的中值以减少噪声,并将结果裁剪到兴趣区域内。接着,选择RGB波段和全色波段(B8),并将RGB图像转换为HSV颜色空间,用全色波段替换亮度分量后转回RGB,实现HSV锐化。此外,还使用Brovey变换方法对各波段分别处理后再合成新的锐化图像。最后,将处理后的不同版本图像添加到地图上进行可视化展示。 适合人群:具备一定遥感数据分析基础的研究人员或工程师,尤其是对GEE平台有一定了解的用户。 使用场景及目标:①学习如何在GEE平台上处理和分析卫星影像数据;②掌握图像锐化技术如HSV和Brovey变换的具体实现步骤;③熟悉如何设置可视化参数并在地图上展示处理结果。 阅读建议:此文档提供了详细的GEE脚本示例,建议读者跟随代码逐步操作,同时参考官方文档加深理解,确保能正确执行每一步骤。

2025-06-05

【地理信息系统】基于Google Earth Engine的Landsat 9影像分类与指数计算:土地覆盖分类及精度评估

内容概要:本文档详细记录了利用Google Earth Engine (GEE) 进行遥感图像处理与分类的工作流程。首先定义了一个研究区域(AOI),并设定了时间范围为2023年6月至10月。接着加载了Landsat 9卫星影像集合,对影像进行了缩放因子校正,计算了归一化植被指数(NDVI)和归一化建筑指数(NDBI)。随后,通过随机森林算法训练了一个分类器,并用其对影像进行分类。最后,对分类结果进行了可视化展示,包括RGB合成图、假彩色合成图、NDVI图、NDBI图以及最终的分类图像,并评估了分类精度,同时将分类结果导出到Google Drive。 适合人群:具有遥感技术基础知识,对GEE平台有一定了解的研究人员或学生。 使用场景及目标:①学习如何在GEE平台上处理和分析Landsat系列卫星数据;②掌握遥感影像预处理方法,如应用缩放因子、计算植被指数等;③熟悉基于机器学习的影像分类流程,特别是随机森林算法的应用;④了解如何评估分类模型的准确性及导出处理后的影像数据。 阅读建议:本案例侧重于实际操作步骤和技术细节,建议读者在阅读时结合GEE官方文档进行深入理解,并尝试在自己的项目中复现文中提到的操作。

2025-06-05

【遥感影像处理】基于Google Earth Engine的Landsat 9影像分类:多光谱数据聚类分析与可视化系统构建

内容概要:本文档提供了一个基于Google Earth Engine (GEE) 的脚本示例,用于对指定区域内的Landsat 9影像进行处理和分类。首先定义了研究区的多边形边界geometry,然后加载2023年全年Landsat 9影像集并筛选出与研究区相交的影像。接着定义了缩放因子函数applyScaleFactors,将光学波段和热红外波段分别乘以相应的系数并加上偏移值,以转换为物理量。之后创建了影像合成composite,从中选取特定波段用于后续分类。定义了训练参数,包括采样区域、像元数量等,并采用K-means聚类算法对影像进行分类,设置聚类数目为8。最后将分类结果及合成影像以不同色彩显示在地图上,并调整地图中心位置聚焦于研究区。 适合人群:遥感数据分析人员、地理信息系统(GIS)开发者以及对卫星影像处理感兴趣的科研工作者。 使用场景及目标:①从GEE平台获取特定时间段和区域的Landsat 9卫星数据;②应用适当的缩放因子对原始DN值进行转换;③利用K-means算法对影像进行地物分类;④可视化展示分类结果和RGB合成影像。 阅读建议:在阅读此脚本时,建议先熟悉GEE平台的基本操作和Landsat 9的数据特性,同时注意理解各个函数的作用及其参数配置,以便能够灵活修改脚本以适应不同的研究需求。

2025-06-05

【遥感与地理信息系统】基于Google Earth Engine的Sentinel-2影像叶面积指数(LAI)估算:随机森林回归模型构建与应用

内容概要:本文档展示了如何使用Google Earth Engine的JavaScript API构建机器学习模型,以估算植被的叶面积指数(LAI)。首先定义了目标变量和特征选择,接着从Google Cloud项目中加载训练和测试数据集,并对训练数据进行了排序和随机化处理。然后,通过探索性数据分析(EDA)查看目标变量的分布情况。接下来,利用随机森林回归算法训练模型,并展示了模型的特征重要性和树结构。为了验证模型性能,分别在训练集和测试集上进行预测,计算了均方根误差(RMSE)和决定系数(R²)。最后,选择了特定日期和地理区域的Sentinel-2卫星图像,应用训练好的模型进行预测,并将预测结果可视化到地图上。 适合人群:具备一定编程基础和遥感知识,对机器学习和地球观测感兴趣的研发人员或科研工作者。 使用场景及目标:①学习如何在Google Earth Engine平台中构建和训练机器学习模型;②掌握如何处理和分析遥感影像数据,特别是基于Sentinel-2数据的叶面积指数估算;③了解如何评估模型性能并将其应用于实际地理区域的预测。 阅读建议:本案例不仅提供了完整的代码实现,还详细记录了每一步的操作流程和关键点,建议读者按照文档顺序逐步实践,同时注意理解各部分代码的功能及其背后的原理。此外,读者应准备好相应的开发环境,并确保能够访问Google Earth Engine平台及相关资源。

2025-06-05

【地理信息系统】基于Google Earth Engine的德累斯顿植被变化分析:2000至2020年Landsat与MODIS数据对比研究了文档的主要内容

内容概要:本文档展示了如何使用Google Earth Engine (GEE) 对德国德累斯顿地区的植被变化进行分析。首先,通过调用Landsat 8和Landsat 7卫星图像集合并筛选特定年份(2000年和2020年)的数据,计算归一化植被指数(NDVI),并将结果可视化到地图上。接着,对比这两个时期的NDVI值,创建二进制阈值来识别植被增加或减少的情况,并以不同颜色在地图上显示出来。此外,还引入了MODIS Terra数据集,同样计算了2005年和2020年的NDVI均值,并尝试绘制了2005年和2020年的NDVI时间序列图,以进一步分析德累斯顿地区在这两个年份内的植被变化趋势。 适合人群:对遥感技术、地理信息系统(GIS)以及环境监测感兴趣的科研人员、学生或从业者。 使用场景及目标:①学习如何利用GEE平台获取、处理和分析卫星影像数据;②掌握NDVI的计算方法及其在评估地表植被覆盖度方面的应用;③理解如何通过时间序列分析研究某一区域内的长期生态变化。 其他说明:文中提供的脚本代码可以直接在GEE平台上运行,但需要注意的是,在创建时间序列图表时遇到了投影问题,这可能需要额外调整才能正确显示图表。同时,为了更精确地研究特定区域的变化情况,文中还定义了一个多边形几何对象用于限定分析范围。

2025-06-05

【地理信息系统】基于Google Earth Engine的NO2浓度时空分析:定义AOI与时间范围进行图像集合处理和可视化

内容概要:本文档提供了使用Google Earth Engine (GEE) 处理和可视化二氧化氮(NO2)浓度数据的脚本示例。首先定义了感兴趣区域(AOI),并设置时间范围为2023年9月1日至2024年1月1日。接着加载了欧洲空间局的哨兵5P卫星提供的NO2影像集,筛选出特定时间段内的数据并裁剪到AOI范围内。计算了该时间段内的NO2平均浓度图像,并将其添加到地图上进行可视化展示。最后创建了一个时间序列图表,用于显示NO2浓度随时间的变化趋势; 适合人群:环境科学、地理信息系统及相关领域的研究人员或学生; 使用场景及目标:①学习如何利用GEE平台获取、处理大气污染物浓度数据;②掌握绘制污染物时空分布图的方法; 其他说明:此脚本使用了GEE平台的JavaScript API编写,在实际应用中需要根据具体研究对象调整AOI、时间范围等参数。

2025-06-05

【遥感影像处理】基于Google Earth Engine的Landsat 9影像全色锐化:WRS路径164行35的多光谱与全色波段融合技术实现概括了文档内容

内容概要:本文档详细介绍了如何使用Google Earth Engine(GEE)脚本对Landsat 9 Level 1 TOA影像进行锐化处理。首先定义了研究区域(AOI),然后加载Landsat 9影像集并筛选出2023年、路径164、行35、云量小于10%的影像。接着选择云量最少的一张影像,从中提取多光谱波段(红、绿、蓝)和全色波段(B8)。通过将RGB图像转换为HSV颜色空间,并用全色波段替换亮度值(V),再转换回RGB空间完成锐化处理。最后设置了两种图像的可视化参数,并将原始真彩色图像和锐化后的RGB图像叠加到地图上显示。 适合人群:遥感技术爱好者、地理信息系统(GIS)专业人员以及从事地球观测数据分析的研究人员。 使用场景及目标:①学习如何利用GEE平台进行卫星影像的数据处理与分析;②掌握Landsat系列卫星数据特别是Landsat 9数据的获取、筛选和预处理方法;③理解并实践基于全色波段的多光谱影像锐化技术。 其他说明:此文档提供的脚本不仅有助于理解遥感影像处理的基本流程,还能帮助用户熟悉GEE平台的操作方式。建议读者结合实际案例进行练习,以加深对相关技术和工具的理解。

2025-06-05

【遥感影像处理】基于Google Earth Engine的Landsat 9影像 pansharpening:使用Brovey变换提升WRS路径164行35区域影像清晰度

内容概要:本文档提供了一段用于执行Landsat 9 Level 1 TOA影像锐化处理的JavaScript代码示例,主要采用Brovey变换方法。代码首先定义了研究区域(AOI),然后从GEE平台加载并筛选符合特定条件(路径164、行35、云量小于10%)的Landsat 9影像数据集。接着选取多光谱波段(近红外、红、绿、蓝)和全色波段,并计算各波段与全色波段的比例关系以完成锐化处理。最后,将处理后的图像与原始图像进行对比可视化展示。 适合人群:对遥感影像处理、地理信息系统(GIS)、Google Earth Engine(GEE)平台有一定了解的研究人员或技术人员。 使用场景及目标:①学习如何利用GEE平台获取、筛选并处理卫星影像数据;②掌握基于Brovey变换方法进行影像锐化的具体步骤和技术细节;③比较锐化前后影像的质量差异。 阅读建议:建议读者在阅读过程中结合实际操作,在GEE平台上运行代码,以便更好地理解各个函数的作用及参数设置的意义。同时,可以尝试修改代码中的参数(如日期范围、云量阈值等),以探索不同条件下的影像处理效果。

2025-06-05

【地理信息系统】基于Google Earth Engine的Landsat 9地表温度提取与可视化:2023年数据处理脚本

内容概要:本文档提供了一段用于处理 Landsat 9 卫星图像的 JavaScript 代码,主要目的是从 Google Earth Engine (GEE) 平台获取并处理地表温度(LST)数据。首先定义了研究区域(aoi),然后筛选出符合特定条件(时间范围为2023年全年,路径号为164,行号为35,云量小于10%)的 Landsat 9 图像集合。从中选取云量最少的一张图像,并对其中的热红外波段(ST_B10)进行转换计算得到地表温度(单位为开尔文和摄氏度)。最后将处理后的地表温度数据显示在地图上,并导出到 Google Drive 中。; 适合人群:从事地理信息系统(GIS)、遥感科学相关领域的研究人员或学生,以及对卫星数据分析感兴趣的开发者。; 使用场景及目标:①学习如何利用 GEE 平台进行遥感影像的数据筛选与预处理;②掌握从原始卫星数据中提取地表温度的方法;③了解如何将处理结果可视化并在云端存储。; 阅读建议:读者应具备一定的 JavaScript 编程基础和遥感基础知识,在阅读时可以结合 GEE 官方文档加深理解,并尝试修改代码参数以适应不同研究需求。

2025-06-05

【地理信息系统】基于Google Earth Engine的德黑兰NO2浓度图像收集与可视化:环境监测脚本示例

内容概要:本文档展示了如何利用Google Earth Engine (GEE) 平台进行地理空间数据分析的具体操作示例。文档通过JavaScript代码片段演示了基于GEE平台对特定区域(德黑兰)的NO2浓度数据进行处理和可视化的流程。首先通过`Map.centerObject(tehran)`将地图中心定位到德黑兰地区,然后创建了一个影像集合变量`imageCollection`,它来源于Copernicus Sentinel-5P卫星在2021年1月期间获取的NO2数据集,并对其做了时间筛选(.filterDate())、最小值合成(.min())以及按边界裁剪(.clip())等预处理操作,最后将处理后的影像图层添加到地图中显示出来; 适合人群:从事地理信息系统研究、环境监测、大气污染研究等相关领域的科研人员或学生; 使用场景及目标:①学习并掌握GEE平台的基本操作方法;②了解如何从GEE获取指定时间段内的空气质量相关遥感数据;③掌握对获取的数据进行初步处理和可视化展示的技术手段; 其他说明:本示例仅作为入门级的教学案例,实际应用中可能需要根据具体需求调整参数设置和处理方式。

2025-06-05

【地理信息系统】基于Google Earth Engine的德黑兰地区NO2浓度图像收集与可视化:2021年数据展示与分析系统构建

内容概要:本文档展示了如何使用Google Earth Engine (GEE) API来处理和展示卫星图像数据。文档中首先通过`Map.centerObject(tehran)`将地图视图中心定位到德黑兰地区。接着,创建了一个图像集合`imageCollection`,该集合来源于COPERNICUS/S5P/NRTI/L3_NO2项目,筛选了2021年全年覆盖德黑兰区域的NO2浓度数据,并打印出图像集合信息。为了进一步说明,还选取了一张具体的NO2浓度图`singleImage`(拍摄于2021年1月4日),同样打印了这张单独图像的信息,并将其添加为地图的一层进行可视化展示。; 适合人群:对地球科学、环境监测以及遥感技术感兴趣的科研人员或学生,特别是那些想要学习如何利用GEE平台进行数据分析与可视化的群体。; 使用场景及目标:①研究特定时间段内某一地区的NO2浓度变化情况;②学习GEE平台的基本操作,如创建图像集合、过滤数据、获取单个图像信息及地图图层的添加等。; 其他说明:此文档作为一个简单的示例,旨在帮助用户快速上手GEE脚本编写,用户可以根据实际需要调整参数,如地理位置、时间范围等,以适应不同的研究需求。

2025-06-05

【地理信息系统】基于Google Earth Engine的巴基斯坦地区多源遥感数据月度汇总与可视化:2015年水文气象参数分析

内容概要:本文展示了如何使用Google Earth Engine(GEE)及其Python API对巴基斯坦地区的多源遥感数据进行处理和可视化。具体包括了GRACE重力卫星数据、降水、气温、地表温度、湿度、蒸发量、径流和NDVI植被指数等多个要素的时间序列分析。通过定义`convert_to_monthly_sum`与`convert_to_monthly_average`函数,实现了月度累积值或平均值计算,并利用`join_collections`函数将不同类型的影像数据集按日期合并。最后,基于随机森林算法构建了GRACE数据分类模型,并分别以55公里和10公里分辨率展示结果图层。此外,还设置了统一的颜色渐变方案来直观呈现水文变化趋势。 适合人群:有一定地理信息系统(GIS)和Python编程基础的研究人员或工程师,特别是关注气候变化、水资源管理和环境监测领域的专业人士。 使用场景及目标:① 对比分析同一区域内不同分辨率下的GRACE重力卫星数据;② 探讨各气象因子之间的相互关系及其对植被生长的影响;③ 为相关科研项目提供数据支持和技术参考。 其他说明:本案例侧重于实际操作演示,读者应具备基本的GEE平台使用经验和Python脚本编写能力。建议在学习过程中尝试修改参数设置或添加其他数据源,以加深理解并探索更多可能性。同时注意API接口调用次数限制以及数据版权问题。

2025-06-06

【时间序列分析】基于SARIMA模型的月度NDVI数据预测与可视化:数据预处理、模型训练及效果评估

内容概要:本文详细介绍了使用Python进行时间序列分析和预测的方法,特别是针对月度NDVI(归一化差异植被指数)数据。首先,文章展示了如何导入必要的库和数据,并对数据进行了初步探索与清洗,包括处理缺失值和将日期列设置为索引。接着,通过可视化手段展示了原始数据的分布情况,并应用季节分解方法分析了数据的趋势、季节性和残差成分。为了检验数据的平稳性,文中使用了ADF(Augmented Dickey-Fuller)测试,并对非平稳数据进行了差分处理。此外,文章还深入探讨了自相关函数(ACF)和偏自相关函数(PACF)图的应用,以帮助选择合适的ARIMA模型参数。最后,文章构建并评估了一个SARIMA模型,用于预测未来三年(2023-2025年)的月度NDVI值,并通过图形展示了预测结果及其置信区间。 适合人群:具备一定Python编程基础的数据分析师、数据科学家以及对时间序列分析感兴趣的科研人员。 使用场景及目标:① 学习如何处理和分析时间序列数据,包括数据预处理、可视化和模型选择;② 掌握ADF测试、ACF/PACF图的解读以及SARIMA模型的构建和评估;③ 实现对未来NDVI值的预测,并理解预测结果的置信区间。 其他说明:本文提供了完整的代码示例,涵盖了从数据加载到模型训练和预测的所有步骤。读者可以通过运行这些代码来加深对时间序列分析的理解,并应用于类似的数据集上。建议读者在实践中逐步调试代码,结合理论知识,以更好地掌握时间序列建模的技术。

2025-06-06

地球科学基于Python的GEE卫星影像下载与处理:缅甸考玛地区多光谱图像获取及可视化系统实现

内容概要:本文档展示了如何使用Python脚本从Google Earth Engine (GEE) 获取卫星影像数据并进行处理。首先,通过坐标创建多边形GeoJSON文件定义感兴趣的区域(如缅甸的Kaung Ma)。然后,利用定义的时间范围(如2020年4月12日至5月12日)和指定的卫星数据源(如Sentinel-2),从GEE下载对应区域的遥感图像。下载后的TIFF格式影像文件被存储在本地目录下,并通过tiffutils模块加载和可视化展示。此外,还展示了对多个不同地点(如夏威夷的几个海滩和岛屿)执行相同操作的过程。 适合人群:对地理信息系统(GIS)、遥感技术和Python编程有一定了解的研究人员或开发者。 使用场景及目标:①学习如何自动化地从GEE获取特定时间和地理位置的卫星影像;②掌握如何处理和可视化这些影像数据;③为后续基于卫星影像的分析任务提供数据准备支持。 其他说明:此脚本适用于Windows操作系统环境,并依赖于geedownload库中的geeutils和tiffutils模块。用户需要确保已正确安装相关依赖项,并根据实际情况调整参数(如站点名称、日期范围等)。在运行过程中,如果遇到已经下载过的站点,则不会重复下载。同时,对于某些非图形界面环境中(如Jupyter Notebook),可能会出现无法显示图像的情况。

2025-06-06

【地理信息系统】基于Google Earth Engine的卫星影像下载与处理:特定区域多光谱数据获取及可视化系统实现

内容概要:该文档展示了如何利用Google Earth Engine (GEE) 和 Python 脚本从GEE平台下载卫星影像数据并进行处理。首先,通过定义坐标和时间范围选择下载位置,并创建GeoJSON多边形文件。接着,调用geeutils模块中的函数retrieve_imagery检索指定时间段内的卫星影像,包括Landsat和Sentinel-2系列卫星的数据。对于每个可用的影像,脚本会下载特定波段(如红、绿、蓝、近红外等),并保存为TIFF格式文件。此外,还展示了如何清理多余的TIFF文件以及加载并显示这些图像。部分卫星数据(如L5、L7、L8、L9)在指定的时间和区域内没有找到可用影像。 适合人群:具有基本Python编程技能,对遥感数据处理和地理信息系统有一定了解的研究人员或工程师。 使用场景及目标:①需要获取特定地理位置和时间范围内的高分辨率卫星影像用于环境监测、农业评估等领域;②学习如何使用GEE API和Python脚本自动化下载和预处理卫星数据;③掌握如何处理和可视化下载后的TIFF格式影像数据。 其他说明:由于某些卫星数据在特定区域和时间段内不可用,实际应用时需注意检查数据覆盖情况。同时,在展示图像时遇到了一些警告信息,这可能是由于使用的Matplotlib后端不支持图形界面或数据值超出显示范围所致。建议确保运行环境配置正确,并根据需要调整图像显示参数。

2025-06-06

遥感技术基于Google Earth Engine的S1 SAR后向散射数据处理与可视化:含多视处理和斑点滤波的影像分析系统设计

内容概要:本文档详细介绍了如何使用Google Earth Engine (GEE) 和 RadGEEToolbox 工具包来处理和分析Sentinel-1 SAR(合成孔径雷达)数据。首先,文档解释了如何安装必要的Python包(如geemap和ipykernel),以支持交互式地图可视化。接着,文档展示了如何初始化Earth Engine API,并定义研究区域(ROI)。随后,通过设置参数(如日期范围、极化方式、轨道方向等),创建并过滤Sentinel-1 SAR图像集合。为了提高效率,对图像进行了裁剪、多视处理和斑点滤波。最后,文档演示了如何将处理后的图像转换回dB单位进行分析,并通过时间平均合成图像,最终利用geemap包在地图上可视化结果。 适合人群:具有一定的Python编程基础,对遥感数据分析尤其是SAR数据处理感兴趣的科研人员和技术开发者。 使用场景及目标:① 学习如何使用GEE和RadGEEToolbox进行SAR数据的预处理,包括裁剪、多视处理和斑点滤波;② 掌握如何将处理后的SAR数据可视化,以便于进一步分析和解释;③ 为后续深入研究提供基础,例如环境监测、灾害评估等领域。 阅读建议:由于文档涉及较多的技术细节和代码示例,在阅读时应确保理解每个步骤的目的和逻辑,同时可以尝试运行提供的代码片段,以加深理解和掌握实际操作技能。此外,建议参考官方文档获取更多关于RadGEEToolbox的功能和用法。

2025-06-06

【地理信息系统】基于Google Earth Engine的云像素插值与研究区域分割:MODIS LAI数据处理及可视化

内容概要:本文档展示了如何使用Python库pymapee和Google Earth Engine(GEE)进行地理空间数据分析。首先,通过初始化GEE并定义感兴趣区域(AOI),对MODIS卫星数据进行了云像素掩膜处理,使用MODIS LAI Terra数据集作为示例,通过质量控制字段筛选有效数据,并对缺失值进行线性插值填补。其次,将研究区域划分为多个小块(chunks),以便于分布式计算和可视化展示。最后,通过循环遍历每个小块,实现了对特定区域的详细分析与可视化。 适合人群:具有一定Python编程基础并对遥感数据处理感兴趣的科研人员或地理信息系统(GIS)开发者。 使用场景及目标:① 对MODIS等卫星影像数据进行预处理,包括去除云层干扰和插补缺失值;② 将大面积研究区细分为便于管理的小单元,提高计算效率;③ 利用GEE平台强大的云计算能力,实现高效的空间数据分析与可视化。 阅读建议:读者应熟悉Python编程语言以及基本的地理空间概念,建议在阅读过程中配合实际操作练习,同时可以参考官方文档以加深理解。

2025-06-06

Notebook 01. Cloud masking and vegetation indices.ipynb

pymapee 是一个简单的 Python 包,旨在提供常见功能,使用 Google Earth Engine 预处理或计算植被干旱指数。目前,该包支持云掩膜(MODIS、Landsat、Sentinel-2)、合成(月度)、缺失值插值,以及计算植被异常指数(VAI)和植被状况指数(VCI)。它还支持下载图像集合(例如,时间序列 NDVI 或 LST)或单个图像。

2025-06-06

Notebook 02. Interpolating MODIS Time-Series and chunks.ipynb

pymapee 是一个简单的 Python 包,旨在提供常见功能,使用 Google Earth Engine 预处理或计算植被干旱指数。目前,该包支持云掩膜(MODIS、Landsat、Sentinel-2)、合成(月度)、缺失值插值,以及计算植被异常指数(VAI)和植被状况指数(VCI)。它还支持下载图像集合(例如,时间序列 NDVI 或 LST)或单个图像。

2025-06-06

Notebook 03. Extract Raster Values From Image.ipynb

pymapee 是一个简单的 Python 包,旨在提供常见功能,使用 Google Earth Engine 预处理或计算植被干旱指数。目前,该包支持云掩膜(MODIS、Landsat、Sentinel-2)、合成(月度)、缺失值插值,以及计算植被异常指数(VAI)和植被状况指数(VCI)。它还支持下载图像集合(例如,时间序列 NDVI 或 LST)或单个图像。

2025-06-06

Notebook 04. Interactive maps.ipynb

pymapee 是一个简单的 Python 包,旨在提供常见功能,使用 Google Earth Engine 预处理或计算植被干旱指数。目前,该包支持云掩膜(MODIS、Landsat、Sentinel-2)、合成(月度)、缺失值插值,以及计算植被异常指数(VAI)和植被状况指数(VCI)。它还支持下载图像集合(例如,时间序列 NDVI 或 LST)或单个图像。

2025-06-06

【地理信息系统】基于Google Earth Engine的MODIS NDVI可视化:Python脚本实现遥感影像展示规范,具体解释

内容概要:本文档展示了如何使用gee和pymapee库来可视化MODIS NDVI数据。首先导入了必要的库并初始化了Earth Engine。然后创建了一个地图对象。接着选择了MODIS/061/MOD13A2数据集中的第一个图像作为NDVI数据源。定义了显示参数,包括波段选择、数值范围以及颜色调色板。最后将NDVI图层添加到地图上,并设置了地图中心位置和缩放控件等配置。; 适合人群:对地理信息系统(GIS)、遥感数据处理或地球科学领域感兴趣的开发者或研究人员。; 使用场景及目标:①学习如何利用Google Earth Engine API进行遥感影像的获取与处理;②掌握pymapee库的基本用法,能够快速构建包含遥感数据的地图应用;③理解MODIS NDVI数据集及其可视化方法。; 阅读建议:读者可以参照本文档中的代码示例,在自己的环境中运行以加深理解。同时建议进一步探索更多类型的遥感数据集及其应用场景。

2025-06-06

【遥感与地理信息系统】基于Google Earth Engine的MODIS NDVI数据提取与分析:省级行政区划植被指数统计

内容概要:本文档展示了如何利用Python库pymapee和Google Earth Engine(GEE)API进行遥感数据处理。首先初始化GEE环境,然后以MODIS NDVI Terra数据集为例,演示了如何从影像中提取栅格值。具体步骤包括:加载图像集合、进行云层像素掩膜处理并选择NDVI波段、创建月度NDVI合成图、定义研究区域(越南各省)。最后,使用平均法从第一个影像中提取每个省的值,并展示部分数据框内容,数据框中包含多个遥感参数如年积日、详细质量评估、EVI、NDVI等; 适合人群:有一定编程基础,对遥感数据分析、地理信息系统感兴趣的科研人员或学生; 使用场景及目标:①学习如何利用pymapee与GEE API获取并处理遥感数据;②掌握基于矢量边界提取栅格数据的方法; 阅读建议:建议读者提前安装好所需的Python库,并熟悉基本的Python编程和遥感基础知识,在实践中逐步理解代码逻辑和数据处理流程。

2025-06-06

【遥感与地理信息系统】基于Python的GEE脚本:NDVI月合成及植被指数计算与可视化

内容概要:本文档详细介绍了利用Python库(如pymapee、geemap和Google Earth Engine API)进行地理空间数据分析与可视化的方法。主要内容包括:1) 通过MODIS NDVI数据集去除云层干扰并生成月度合成图像;2) 计算植被异常指数(VAI)和植被状况指数(VCI),以评估植被健康状态;3) 利用ERA5-Land数据集创建每日温度合成图像;4) 提供了从Google Earth Engine导出特定区域NDVI时间序列数据至Google Drive的功能。文档不仅展示了数据处理流程,还提供了具体的代码实现。 适合人群:对地理信息系统(GIS)、遥感技术和Python编程有一定了解的研究人员或工程师。 使用场景及目标:① 对MODIS和ERA5-Land等卫星数据进行预处理,去除噪声和无效值;② 分析植被变化趋势,监测环境质量;③ 学习如何使用Google Earth Engine平台处理大规模时空数据;④ 掌握将处理后的数据导出为可进一步分析的形式。 阅读建议:由于涉及较多技术细节,建议读者具备一定的GIS基础知识和Python编程经验,在实践中逐步理解各步骤的意义,并尝试修改参数观察结果的变化。同时,对于不熟悉的部分,可以通过查阅官方文档或相关教程加深理解。

2025-06-06

S1_SAR_Backscatter_Basic_Usage (1).ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 处理和分析卫星图像的过程。它提供了现成的工具,用于过滤、掩膜、镶嵌、光谱指数计算,以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据。 RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的约束条件下最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都能帮助您更快地获得结果。

2025-06-06

Palettes_and_Visualization (1).ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 处理和分析卫星图像的过程。它提供了现成的工具,用于过滤、掩膜、镶嵌、光谱指数计算,以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据。 RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的约束条件下最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都能帮助您更快地获得结果。

2025-06-06

Multispectral_Functions_Examples (1).ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 处理和分析卫星图像的过程。它提供了现成的工具,用于过滤、掩膜、镶嵌、光谱指数计算,以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据。 RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的约束条件下最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都能帮助您更快地获得结果。

2025-06-06

Complete_ReadMe_Example.ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 处理和分析卫星图像的过程。它提供了现成的工具,用于过滤、掩膜、镶嵌、光谱指数计算,以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据。 RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的约束条件下最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都能帮助您更快地获得结果。

2025-06-06

【遥感与地理信息系统】基于RadGEEToolbox的地球引擎图像可视化:调色板与参数配置在陆地卫星数据处理中的应用

内容概要:本文档详细介绍了gee scripts.txt的内容,主要围绕地球引擎(Earth Engine)与RadGEEToolbox工具包的结合使用展开。文档首先说明了需要安装geemap和ipykernel包来支持地图可视化功能。接着介绍了如何初始化Earth Engine并处理可能出现的认证问题。文档重点讲解了RadGEEToolbox中的两个用于图像可视化的包:GetPalette和VisParams。前者提供获取不同调色板的功能,后者用于定义卫星影像的可视化参数。此外,文档还展示了如何创建、处理和可视化Landsat图像集合,包括真彩色、NDVI、NDWI、地表温度(LST)等指数的可视化,以及相对水体浑浊度的计算与展示。每个步骤都配有具体的代码示例,使用户能够轻松理解和应用。 适合人群:对地理信息系统(GIS)、遥感数据处理感兴趣的科研人员、学生或开发者,特别是那些希望利用Python进行地球观测数据分析的人群。 使用场景及目标:①为用户提供从安装必要软件到完成特定遥感数据分析任务的完整流程指导;②帮助用户掌握如何使用RadGEEToolbox工具包处理Landsat等卫星影像,进行如真彩色、植被指数、地表温度等常见遥感产品的制作与可视化;③通过具体案例演示,让用户了解如何快速高效地处理大规模遥感数据集,并生成直观的地图输出。 阅读建议:由于文档涉及较多的技术细节和代码实现,建议读者在阅读前先熟悉Python编程语言和基本的遥感概念。同时,按照文档提供的步骤逐步操作,确保每一步都能正确执行,以便更好地理解整个流程和技术要点。

2025-06-06

遥感技术基于Google Earth Engine的多光谱指数计算与时间序列影像处理:Landsat和Sentinel-2数据的光谱分析及应用

内容概要:本文档详细介绍了如何使用RadGEEToolbox库进行多光谱指数计算。首先通过初始化Google Earth Engine并验证连接状态确保数据获取通道畅通。然后重点讲解了针对Landsat和Sentinel-2卫星影像的多种光谱指数(如NDWI、NDVI、NDTI、叶绿素浓度、蒸发岩指数等)的快速计算方法,以及地表温度的计算方式。此外,还展示了对图像集合进行时间维度上的统计汇总(均值、最小值、中位数、最大值),并且支持基于阈值的二值化掩膜处理。最后提到可以利用静态方法函数直接操作GEE对象完成上述任务。; 适合人群:遥感领域研究人员、地理信息系统开发者以及对卫星影像处理感兴趣的初学者或进阶用户。; 使用场景及目标:①需要处理和分析多光谱卫星影像的专业人士;②希望了解如何使用Python库来自动化计算各类植被、水质等环境参数的研究人员;③想要掌握如何对长时间序列影像数据集执行时间聚合分析的操作人员。; 阅读建议:建议读者熟悉基本的Python编程知识,尤其是有关地理空间数据处理的概念。同时,在实践中应参考官方文档以获取最新的API更新和支持信息。

2025-06-06

【遥感影像处理】基于RadGEEToolbox的Sentinel-2和Landsat图像集合定义与数据管理操作:地球引擎影像处理与分析工具使用指南

内容概要:本文档详细介绍了如何使用 RadGEEToolbox 定义和初始化图像集合(Image Collections),并执行基本的数据管理操作。首先,文档展示了如何通过指定开始日期、结束日期、MGRS 瓦片编号或相对轨道号来定义 Sentinel-2 和 Landsat 图像集合。接着,讲解了如何使用边界几何、云覆盖率阈值和无数据像素阈值进行过滤,以及如何将 RadGEEToolbox 对象与原生 Earth Engine 图像集合对象相互转换。此外,还提供了多种实用方法,如云掩膜、水体掩膜、按日期镶嵌图像、选择特定日期的图像、计算水体面积等。最后,通过具体示例展示了如何创建有价值的时间序列数据集。 适合人群:具备一定编程基础,特别是对遥感数据处理和 Earth Engine 平台有一定了解的研发人员和数据科学家。 使用场景及目标:①定义和初始化 Sentinel-2 和 Landsat 图像集合;②基于时间范围、地理边界、云覆盖率和无数据像素进行图像过滤;③将 RadGEEToolbox 对象与原生 Earth Engine 图像集合对象相互转换;④应用云掩膜、水体掩膜、镶嵌图像等高级处理方法;⑤创建和分析时间序列数据集,如计算特定区域内的水体面积变化。 阅读建议:此文档不仅涵盖了代码实现,还强调了实际应用场景中的需求分析和解决方案设计。读者应结合实际需求,逐步实践每个步骤,并根据需要调整参数设置。同时,建议参考 RadGEEToolbox 的官方文档获取更多详细信息。

2025-06-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除