目录
贷后管理
贷后是风控的最后一道防线,到了贷后阶段,风控的重点工作就变成了贷款回收和不良贷款处置。上文讲到的贷前和贷中风控主要影响放贷资产的人催率,通常情况下,若风控做得好,入催率会比较低,若风控做得差,入催率会高一些,但是,在贷款逾期后,贷前和贷中风控就无能为力了,这时就只能依靠贷后对逾期资产进行回收和处置了。在整个风控过程中,贷前、贷中和贷后分别侧重客户不同阶段的风控,只有将各个阶段的风控都做好,才能减少损失,增加收益。
贷后风控日标
贷后阶段涉及的事项主要有两大部分,分别是贷后管理和贷后催收,严格地讲,贷后催收属于贷后管理的一部分,因其特殊性,一般单独进行说明。贷后管理主要包括贷后检查、贷款五级分类、不良贷款处置、押品管理等内容,贷后催收主要包括催收策略设计、催收手段选取等内容。贷后要实现的主要风控目标有三个,具体描述如下。
尽可能催回逾期贷款
在贷款逾期后,主要通过贷后催收来追回逾期欠款,催回率越高,金融机构的损失就越少。当前,很多金融机构的放贷规模都非常大,这样就导致贷款逾期金额也比较大,甚至以亿元为单位计算,对于这么多逾期金额,若贷后催收做得不好,会给金额机构带来非常大的损失,所以,做好贷后催收意义重大。
做好不良资产处置
若进人不良阶段的逾期贷款规模较大,那么,一方面会广生轻味的风险,甚至不良率过高会导致金融机构破产,另一方面会占用金融机构较多的信贷资源和监管资本,影响金融机构的放贷能力,不利于金融机构正常经营。所以,做好不良资产处置很有必要。
金融机构及时、合理地进行不良资产处置,一方面可以从一定程度上化解风险,降低不良率,另一方面可以释放更多的信贷资金,增加放贷规模。不良资产并非没有价值的资产,相反,它是有一定价值的,若处理及时、得当,则会为金融机构带来可观的回报。在进行不良资产处置后,可以降低拨备,在释放更多的信贷资金用来支持经济发展的同时获取更可观的利润。
推动实现利润最大化
与贷前和贷中一样,贷后既需要从自身出发实现局部利润最大化,又需要协同贷前和贷中,共同推动实现全局利润最大化。想要实现全局利润最大化,需要站在全局的角度与贷前和贷中做好配合,相关内容在贷前和贷中部分已经讲过
实现贷后利润最大化的重要抓手就是在使用最小成本的前提下不断地提升逾期资产回收率,更好、更优地处理不良资产,通过上述操作不断地降低逾期资产带来的损失,提升贷后利润率。
贷后风控数据源
在贷后,除了可以使用贷前、贷中的所有数据,还会较多地用到贷后催收数据。催收数据主要包括催收手段、催收次数、催收结果等,在贷后,主要基于这些数据构建贷后相关模型和设计催收策略。
贷后涉及的风控数据源除催收数据以外,其他数据与贷前和贷中出入不大。
后试控模型体系和模型在策略中的应用
贷后风控模型体系比较简单,主要包括针对已经逾期客群开发的用来辅助逾期贷款催收的模型。常见的贷后风控模型有催收评分卡模型、账龄滚动模型、失联预测模型、失联修复模型等。
催收评分卡模型
催收评分卡(Collection Score Card)模型即我们常常提到的C卡,用于评估已经逾期的客户在未来一段时间催回的可能性,此处所说的逾期客户主要是指处于M1阶段的客户,而对于M1+阶段的客户,通常催回的可能性比较低,构建C卡的意义不是很大。催收评分卡在用于建模时常用的数据有催收行为数据、逾期数据、历史还款数据、收入和负债数据、客户基本信息、联系人信息、第三方数据等。
在模型构建完成后,会基于C卡模型分对客户进行风险评级,基于评级结果设计差异化催收策略。在制订催收策略的时候,通常是对评级较好的客群不催收或者轻量催收,对评级一般的客群正常催收,对评级较差的客群重点催收,这样对逾期客群的差异化催收通常可以实现以最小的成本获取最大的催收成果。
账龄滚动模型
账龄滚动模型主要预测每一逾期账龄的客户“迁徙”到下一个逾期账龄的概率,概率越高,说明客户下一个账龄继续逾期的可能性越高。常见的账龄滚动模型有MO-M1模型、MI-M2 模型、M2-M3 模型、M3-M4模型,当客户处于M4及以上阶段时(逾期超过120天),还款可能性已经非常低了,这时往往需要采取非常严厉的催收方式促使客户尽快还款,在这种情况下,催收策略的制订基本上不依赖账龄滚动模型,所以,M4-M5甚至更高账龄的滚动模型的开发意义不大。账龄滚动模型开发时常用的数据信息与C卡类似,不再赘述。
在账龄滚动模型开发完成后,同样需要基于模型分对客户进行风险评级,然后基于评级结果设计差异化催收策略。讲到这里,我们会发现账龄滚动模型和C卡很类似,它们都是对客户未来的风险表现进行预测,并基于预测结果设计差异化催收策略以期能以最低的成本尽可能催回逾期贷款。账龄滚动模型与C卡的不同之处在于,前者是预测客户的短期风险,而后者是预测客户的长期风险。在制订催收策略时,往往将上述两种模型结合使用,从长期和短期风险两方面来对客广进行风险评级,基于评级结果更加有针对性地设计催收策略,提升催收效果。
失联预测模型
失联预测模型主要用来预测已经逾期且可以联系上的客户在未来联系不上的概率,希望将失联由事后发现变为提前预知,并对可能失联的客户加强催收,减少损失。失联预测模型的开发思路很简单,难点在于目标字段的定义,即将什么样的客户定义为失联客户,通常可将一段时间内多次拨打电话未接听、停机、空号、关机等情况定义为失联。在开发失联预测模型时,用到的数据有催收数据、交易行为数据、运营商数据、联系人数据、基本信息、逾期信息等。失联预测横型开发完成后,主要与其他贷后风险模型组合应用于催收策略的制订,对于风险高、失联概率高的客户,需要加强催收,避免因客户失联而给金融机构造成较大的损失。
失联修复模型
失联修复模型是指在贷后催收的过程中对已经逾期且失联的客户通过挖掘客户间接的联系方式(如获取与客户有过联系的人的联系方式,通过这些人间接联系上客户),修复客户失联状态的模型。失联修复模型是针对已经失联的客户构建的模型,而失联预测模型是针对还未失联的客户构建的模型,这是二者的不同之处。在构建失联修复模型的时候,主要使用社交网络相关算法,将客户、电话、电子邮箱等作为节点构建社交网络,通过在网络中寻找与失联客户有过联系的客户的联系方式,间接触达失联客户。
失联修复模型开发完成后主要在贷后催收过程中使用,在获取可间接触达客户的联系方式后,直接进行联系,最终能触达客户并进行重点催收即可。
print('要天天开心呀')