基于PCL中KDtree的欧氏聚类

1、原理

      三维空间欧氏距离聚类算法中,涉及到唯一距离参数d。当点之间距离小于距离d 时,表明两点局部相连,属于同一簇点集。其中点之间相连满足如下性质:若点A 与点B 相连,点B 与点C 相连,则点A 与点C 也相连。下图展示了基于欧氏距离聚类的原理,当距离阈值设置合理时,使用空间欧氏距离聚类算法对点进行聚类,所有的点被划分成左右两簇点集,并且两簇点云中任意两点相连。即对于一簇点中任意点,总能从该簇点中找到离该点距离小于d的另外一点。对于左边点集中C点,右边点集中距离C点最近的D点,两点之间距离大于距离阈值,经过聚类后C点与D点归属于两簇不同的点集。

 2、源代码展示

PCL中有自带的欧氏聚类函数,下面是自己编写的源代码,思路还是很清晰的。理解了可以自己编写其他带约束条件的欧氏聚类,如法向量约束、曲率约束等。

#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/io/pcd_io.h>
using namespace std;
#include<vector>
#include <fstream>
#include<iostream>


vector<vector<pcl::PointXYZ>> EucliClusters(vector<pcl::PointXYZ> points, double dis)
{
	vector<vector<pcl::
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云实验室lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值