持续同调(Persistent Homology)是一种拓扑数据分析技术,主要用于从数据中提取多尺度的形状特征。
1、基本概念
- 单纯复形:单纯复形是持续同调的基础,它由顶点、边、三角形等基本单纯形组成的组合结构。在持续同调中,单纯复形用于表示点云数据的连接关系。
- 滤波:滤波是一系列逐步嵌入的单纯复形,它随着某个尺度参数(如距离参数)的增加,单纯复形的规模逐渐增大,从而揭示出不同尺度下的拓扑特征。
- 同调:同调是用于识别数据中的拓扑特征的一种代数工具,它可以识别出连通分支、环和空洞等拓扑特征。
2、持续同调的工作原理
- 构建单纯复形:从点云数据生成单纯复形,例如Rips复形或Cech复形。这些复形能够表示点云数据之间的连接关系。
- 生成滤波序列:根据尺度参数(如距离参数)逐步增加单纯复形的规模,从而生成一系列逐步嵌入的单纯复形。这个过程中,随着距离参数的增大,会出现拓扑特征的生成以及消亡。
- 计算同调:在每个尺度下计算同调群,识别出该尺度下的拓扑特征。同调群能够反映出不同维度下的拓扑特征,如0维的连通分支、1维的环和2维的空洞等。
- 生成持续图:通过计算每个拓扑特征的生成和消亡时间,可以生成持续图(如条形码图或持久性图)。这些图形能够直观地反映出拓扑特征的稳定性和重要性。在持续图中,持续时间较长的特征通常具有重要的现实意义,而持续时间较短的特征则被视为噪声。
3、代码示例
3.1 python中安装第三方库:
pip install ripser persim
3.2 示例代码
import numpy as np
import matplotlib.pyplot as plt
from ripser import ripser
from persim import plot_diagrams
# 生成示例点云数据(环形数据)
n_points = 100
angles = np.linspace(0, 2 * np.pi, n_points)
points = np.c_[np.cos(angles), np.sin(angles)]
# 计算持续同调
diagrams = ripser(points)['dgms']
# 可视化持续图
plot_diagrams(diagrams, show=True)
# 生成条形图
def plot_barcodes(diagrams):
fig, ax = plt.subplots()
for dim, diagram in enumerate(diagrams):
for point in diagram:
ax.plot([point[0], point[1]], [dim, dim], 'b')
ax.set_xlabel("Birth")
ax.set_ylabel("Dimension")
plt.show()
plot_barcodes(diagrams)
代码解释:
生成示例点云数据:创建一个环形数据集,表示一组均匀分布在单位圆上的点。
计算持续同调:使用 ripser 计算点云数据的持续同调。
可视化持续图:使用 persim.plot_diagrams 函数绘制持续图,展示拓扑特征的生成和消亡。
生成条形图:自定义 plot_barcodes 函数绘制条形图,显示各个拓扑特征的生存时间。
4、持续回调应用
- 形状分析:识别和分析数据的几何和拓扑结构。
- 数据降维:通过提取拓扑特征减少数据维度。
- 模式识别:在图像处理和计算机视觉中识别模式和特征。
- 机器学习:用拓扑特征增强特征工程,提高模型性能。
参考文献:
【1】Kong G, Fan H. PH-shape: an adaptive persistent homology-based approach for building outline extraction from ALS point cloud data[J]. Geo-spatial Information Science, 2024, 27(4): 1107-1117.