线性代数的本质-基变换

https://www.bilibili.com/video/av6731067/?p=13

头皮发麻的炸裂,

我们知道向量是有大小和方向的数据,在数学上使用坐标来表示,坐标的关键在与基向量。比如二维坐标的基向量我们通常采用i=\binom{1}{0} ,j=\binom{0}{1}来表示他们的基向量,

一个向量比如\binom{a}{b}=a*\binom{1}{0}+b*\binom{0}{1}

但是如果我们想换一个基座标呢,我们使用假设的新坐标表示一个向量\binom{2}{1}=2*\binom{a1}{a2}+1*\binom{b1}{b2},

这个新坐标的基向量就是\binom{a1}{a2},\binom{b1}{b2} 那么我们想让这个新坐标下的向量用我们常用坐标\binom{1}{0}, \binom{0}{1}表示呢 ,因该怎么做?

 


   

我们知道矩阵表示的是线性变换,线性变换又是通过基座标的改变来表示,也就是矩阵中列的数,比如

\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}\Rightarrow \begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix},我们假设A=\begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix}  ,那么这个A表示的就是矩阵旋转90°这个线性变换,那么矩阵乘以向量,就是这个向量做了这个线性变化后,这个向量变成了什么向量比如\begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix}\binom{1}{1}=\binom{-1}{1} 

我们发现新坐标的基向量\binom{a1}{a2},\binom{b1}{b2},如果用\binom{1}{0}, \binom{0}{1}来看的话就是\binom{2}{1}, \binom{-1}{1} ,其实我们不明白的就是为什么

\begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}\binom{2}{1}=\binom{-4}{1} ,用文字描述就是新坐标下的向量(2,1)经线性运算,变成了(0,1)坐标系下的(-4,1)

这个公式就完成了新坐标系的向量转化成(0,1)坐标系的向量 我怎么想都不能理解

其实这个中间少了一步\begin{bmatrix} a1 &b1 \\ a2&b2 \end{bmatrix}\Rightarrow A\Rightarrow \begin{bmatrix} 1 & 0\\ 0& 1 \end{bmatrix} 

我们把新坐标用(0,1)坐标表示就已经做了一次转换,意思就是A表示了一个线性变换新基座标转化为(0,1)坐标

那么我们使用新基座标的(2,1)乘以矩阵A,就表示对(2,1)做了A变换,也就是把(2,1)从新坐标下的向量变成了(0,1)坐标下的向量,也就是(-4,1)

那么A的逆又是什么呢,哈哈。。。。。。。。老坐标变成新坐标  那么(-4,1)乘以A的逆就等于新坐标系表示下的向量

总结,A表示的就是新坐标线性变换成老坐标 ,新坐标系下的向量乘以A=老坐标系的向量 。老坐标系的向量乘以A的逆=新坐标系的向量。


不仅向量是依靠基座标系,矩阵(线性变换)也依靠着基座标系

那么我们怎在新坐标系下表示矩阵的线性运算呢,比如咋(0,1)坐标下的线性变换A=\begin{bmatrix} 1 &0 \\ 0&-1 \end{bmatrix} 在新坐标系下怎么表示呢

首先我们使用任意向量v ,v表示的是新坐标系下的一个向量,

\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix}v表示的是v在(0,1)坐标下的向量,

\begin{bmatrix} 1 &0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix}v ,表示了v在(0,1)坐标下的向量做线性变换后的向量,

\begin{bmatrix} 2 &-1 \\ 1 & 1 \end{bmatrix}^\top\begin{bmatrix} 1 &0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix}v,表示的是v在(0,1)坐标下的向量做线性变换后的向量做线性变换,变成了新坐标下的向量

所以在(0,1)下的线性变换\begin{bmatrix} 1 &0 \\ 0&-1 \end{bmatrix} 与新坐标系下的\begin{bmatrix} 2 &-1 \\ 1 & 1 \end{bmatrix}^\top\begin{bmatrix} 1 &0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix} 表示的是同一个变换

 

A^{-1}MA暗示着一种数学上的转移作用,中间的M就是转换矩阵(线性变换),两侧的矩阵具有转移的作用,也就是视角上的转化,矩阵乘积后任然表示同一个线性变换,只不过从其他人的视角来看。

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值