【SLAM十四讲学习笔记】第4讲 李群与李代数

SLAM十四讲学习笔记

第4讲 李群与李代数



4.1 李群李代数基础

在这里插入图片描述
它们对加法是不封闭的,关于乘法是封闭的。
群(Group)是一种集合加上一种运算的代数结构。我们把集合记作 A,运算记作 ·,
那么群可以记作 G = (A, ·)。
在这里插入图片描述
李群是指具有连续(光滑)性质的群。像整数群 Z 那样离散的群没有连续性质。而 SO(n) 和 SE(n),它们在实数空间上是连续的。

在这里插入图片描述
由于 R ̇ (t)R(t)T 是一个反对称矩阵,我们可以找到一个三维向量 φ(t) ∈ R3 与之对应。于是有:
在这里插入图片描述
同时在 t0 附近,设 φ 保持为常数 φ(t0) = φ0
在这里插入图片描述
李代数由一个集合 V,一个数域 F 和一个二元运算 [, ] 组成。如果它们满足以下几条 性质,称 (V, F, [, ]) 为一个李代数,记作 g。

在这里插入图片描述

二元运算被称为李括号。李括号表达了两个元素的差异。它不要求结合律,而要求元素和自己做李括号之后为零的性质。作为例子,三维向量 R3 上定义的叉积 × 是一种李 括号,因此 g = (R3 , R, ×) 构成了一个李代数。
李代数 so(3)
在这里插入图片描述
在这里插入图片描述

李代数 se(3)
在这里插入图片描述

我们仍使用 ∧ 和 ∨ 符号来指代“从向量到矩阵”和“从矩阵到向量”的关系在这里插入图片描述

4.2 指数与对数映射

定义:
在这里插入图片描述
性质:
在这里插入图片描述
推导:
在这里插入图片描述
反之,如果定义对数映射, 我们也能把 SO(3) 中的元素对应到 so(3) 中:在这里插入图片描述
SE(3) 上的指数映射:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3 李代数求导与扰动模型

在这里插入图片描述
当 φ1 或 φ2 为小量时,小量二次以上的项都可以被忽略掉。此时,BCH 拥有线性近似表达:

在这里插入图片描述

以第一个近似为例。该式告诉我们,当对一个旋转矩阵 R2(李代数为 φ2)左乘一个 微小旋转矩阵 R1(李代数为 φ1)时,可以近似地看作,在原有的李代数 φ2 上,加上了一 项Jl(φ2)−1φ1。

在这里插入图片描述
在这里插入图片描述

4.3.2 SO(3) 李代数上的求导

计算理想的观测与实际数据的误差:在这里插入图片描述

假设一共有 N 个这样的路标点和观测,于是就有 N 个上式。位姿估计,相当于是寻找一个最优的 T ,使得整体误差最小化: 在这里插入图片描述
我们经常会构建与位姿有关的函数,然后讨论该函数关于 位姿的导数,以调整当前的估计值。

4.3.3 李代数求导

在这里插入图片描述

在这里插入图片描述

4.3.4 扰动模型(左乘)

另一种求导方式,是对 R 进行一次扰动 ∆R。设左扰动 ∆R 对应的李代数为 φ。

在这里插入图片描述

4.3.5 SE(3) 上的李代数求导

在这里插入图片描述


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值