第四讲——李群和李代数

本章说

  题头诗:

  重走SLAM路,之前学的全忘光
  今日重拾起,痛定思痛写总结
  长征路漫漫,君当切实行

  第四讲主要聊了李代数与李群的定义,关联,如何通过指数映射与对数映射互相转换、李群乘法和李代数加法的相互对应公式,以及从对应公式出发的李群求导推导。

讲内容

  第一个内容讲李群和李代数的引出和关系,可以归纳为两个要点:

  1. 李群的引出是因为旋转矩阵的特殊性,要求必须是行列式为1的正交矩阵(正交保证基、行列式为1保证刚体),如果不引入群来归类这一类矩阵,那么在后续优化过程中就必须时刻考虑这些约束。而如果将这类有相同性质的矩阵归类为群,并以一类特定的运算符进行内在计算,则可以保证优化过程中的无约束。
  2. 引入了群概念之后,要做优化还需要知道群的导数是什么,如此才可以使用优化方法。对于两类李群 S O ( 3 ) SO(3) SO(3) S E ( 3 ) SE(3) SE(3),分别定义两类李代数 s o ( 3 ) \mathfrak{so}(3) so(3) s e ( 3 ) \mathfrak{se}(3) se(3),反映李群的局部导数特征。

  第二个内容顺了指对映射的推导过程,可以归纳为三个要点:

  1. 李代数做指数映射变为李群,李群做对数映射变为李代数
  2. 不论是 s o ( 3 ) \mathfrak{so}(3) so(3)还是 s e ( 3 ) \mathfrak{se}(3) se(3),指数变换的推导原理都是指数函数的泰勒展开: f ( x ) = e x p ( x ) = ∑ n = 0 ∞ 1 n ! x n f(x)=exp(x)= \sum_{n=0}^\infty\frac{1}{n!}x^n f(x)=exp(x)=n=0n!1xn以及方向向量 a \bold{a} a的反对称矩阵的平方与立方公式: a ^ a ^ = a a T − I \bold{a}\hat{}\bold{a}\hat{}=\bold{a}\bold{a}^T-\bold{I} a^a^=aaTI a ^ a ^ a ^ = − a ^ \bold{a}\hat{}\bold{a}\hat{}\bold{a}\hat{}=-\bold{a}\hat{} a^a^a^=a^
  3. 两类李群与李代数的指数映射、对数映射可以用如下所示的示意图展示:在这里插入图片描述

  第三个内容讲了李群乘法和李代数加法的对应公式,以及李群的求导方法,可以归纳为三个要点:

  1. 李群乘法与李代数加法通过BCH近似公式关联,分成左乘小量右乘小量两种形式。
  2. 李群的求导方法分为替换为指数映射下的李代数以及扰动小量两种方式。其中李代数求导的一般步骤为:加上李代数小量->BCH近似公式拆分->泰勒展开去高次项,合并化简->得到求导结果;而扰动小量的一般步骤为:乘上以李代数小量的指数映射表示的扰动->泰勒展开去高次项,合并简化->得到求导结果。可以看到由于扰动模型没有引入BCH近似公式,所以省去了麻烦的雅各比矩阵。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值