该原理参考Fundamental Principles of optical Lithography
平面波
球坐标
在光刻中一般将
z
z
z轴的方向看做是光轴,所以有光沿着
z
z
z轴传播。为了方便计算,我们用
z
z
z轴定义一个球坐标轴。定义
θ
\theta
θ为光传播方向
r
\boldsymbol{r}
r与
z
z
z轴夹角,定义
ϕ
\phi
ϕ为
r
−
z
r-z
r−z平面与x轴的夹角。所以方向余弦
α
=
s
i
n
θ
c
o
s
ϕ
\alpha=sin\theta cos\phi
α=sinθcosϕ
β
=
s
i
n
θ
s
i
n
ϕ
\beta=sin\theta sin\phi
β=sinθsinϕ
γ
=
1
−
α
2
−
β
2
=
c
o
s
ϕ
\gamma=\sqrt{1-\alpha^2-\beta^2}=cos\phi
γ=1−α2−β2=cosϕ
平面波的波动方程
我们一般用电场
E
\boldsymbol{E}
E来描述光,对于一束单色光的电场
E
\boldsymbol{E}
E在任意时刻t和任意位置
P
\boldsymbol{P}
P处被表示为
E
(
P
,
t
)
=
A
(
P
)
c
o
s
(
w
t
+
Φ
(
P
)
)
=
R
e
(
U
(
P
)
e
−
i
w
t
)
(公式1)
\tag{公式1} \boldsymbol{E}( \boldsymbol{P},t)=A(\boldsymbol{P})cos(wt+\Phi(\boldsymbol{P}))=Re(\boldsymbol{U}(\boldsymbol{P})e^{-iwt})
E(P,t)=A(P)cos(wt+Φ(P))=Re(U(P)e−iwt)(公式1)平面波是指波阵面为平面的电磁波,波阵面是在同一时刻,由空间振动相位相同的点所组成的平面,即
Φ
(
P
)
=
\Phi(\boldsymbol{P})=
Φ(P)=常数。对于在
z
z
z轴上沿正方向传播的平面波来说,其波动方程与x,y无关,即有
{
∂
U
x
∂
t
=
0
∂
U
y
∂
t
=
0
\begin{dcases} \frac{\partial U_x}{\partial t}=0 \\ \\ \frac{\partial U_y}{\partial t}=0 \end{dcases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧∂t∂Ux=0∂t∂Uy=0带入亥姆霍兹方程方程得
∂
2
U
(
z
)
∂
z
2
+
k
2
U
(
z
)
=
0
\frac{\partial^2 U(z)}{\partial z^2}+k^2U(z)=0
∂z2∂2U(z)+k2U(z)=0解得
U
(
P
)
=
A
e
−
i
k
z
U(P)=Ae^{-ikz}
U(P)=Ae−ikz对于电场的指数表示来说,我们只是取其实部,所以指数上是负数还是正数都无所谓。所以对于传播在
Z
+
Z^+
Z+方向,初相位为的平面波,我们可以这样表示其相量:
U
(
P
)
=
A
e
i
k
z
U(P)=Ae^{ikz}
U(P)=Aeikz所以沿
z
+
z^+
z+方向传播的,初相位为0的平面波的波动方程为:
E
(
z
,
t
)
=
R
e
(
U
(
P
)
e
−
i
w
t
)
=
A
c
o
s
(
w
t
−
k
z
)
E(z,t)=Re(U(P)e^{-iwt})=Acos(wt-kz)
E(z,t)=Re(U(P)e−iwt)=Acos(wt−kz)我们可以将光波看做有一定形状的波,这个形状的波以时间来传播。所以在空间中的任意位置和任意时间,光波的形状都是确定的,即任意位置和时间都有相同的电场即
w
t
−
k
z
=
wt-kz=
wt−kz=常数,换句话说有:
z
−
z
0
=
w
k
t
(公式2)
\tag{公式2} z-z_0=\frac{w}{k}t
z−z0=kwt(公式2)
z
0
z_0
z0是t=0时光波在
z
z
z轴的位置。显然有光的传播速度
v
=
c
n
=
w
k
v=\frac{c}{n}=\frac{w}{k}
v=nc=kw,又有
c
=
w
λ
/
2
π
c=w\lambda/2\pi
c=wλ/2π,所以有
k
=
w
μ
ε
=
2
π
/
λ
k=w\sqrt{\mu\varepsilon}=2\pi/ \lambda
k=wμε=2π/λ对于在任意方向
r
\boldsymbol{r}
r上传播的光,其传播方向
r
\boldsymbol{r}
r是原点到空间中任意一点(x,y,z)的方向向量,所以平面波的电场相量被表示为:
U
(
x
,
y
,
z
)
=
A
e
i
k
⋅
r
=
A
e
i
k
(
α
x
+
β
y
+
γ
z
)
U(x,y,z)=Ae^{i\boldsymbol{k}\cdot\boldsymbol{r}}=Ae^{ik(\alpha x+\beta y+\gamma z)}
U(x,y,z)=Aeik⋅r=Aeik(αx+βy+γz)其中
α
,
β
,
γ
\alpha,\beta,\gamma
α,β,γ为方向余弦。
为了得到平面波时间和空间的关系,我们对其磁场求其对时间求导,然后带入公式2。考虑平面波沿
z
z
z轴方向传播,则有
∂
H
∂
t
=
−
w
k
∂
H
∂
z
=
−
w
k
(
∂
H
x
∂
z
x
ˆ
+
∂
H
y
∂
z
y
ˆ
)
(公式3)
\tag{公式3}\frac{\partial \boldsymbol{H}}{\partial t}=-\frac{w}{k}\frac{\partial \boldsymbol{H}}{\partial z}=-\frac{w}{k}(\frac{\partial H_x}{\partial z}\text{\^x}+\frac{\partial H_y}{\partial z}\text{\^y})
∂t∂H=−kw∂z∂H=−kw(∂z∂Hxxˆ+∂z∂Hyyˆ)(公式3)电场也有相似的等式。电场的旋度为
∇
×
E
=
−
∂
E
y
∂
z
x
ˆ
+
∂
E
x
∂
z
y
ˆ
(公式4)
\tag{公式4}\nabla\times\boldsymbol{E}=-\frac{\partial E_y}{\partial z}\text{\^x}+\frac{\partial E_x}{\partial z}\text{\^y}
∇×E=−∂z∂Eyxˆ+∂z∂Exyˆ(公式4)将公式3和公式4带入重写的麦克斯韦方程
∇
×
E
+
μ
∂
H
∂
t
=
0
\nabla\times\boldsymbol{E}+\mu\frac{\partial \boldsymbol{H}}{\partial t}=0
∇×E+μ∂t∂H=0得到
(
−
∂
E
y
∂
z
−
w
μ
k
∂
H
x
∂
z
)
x
ˆ
+
(
∂
E
x
∂
z
−
w
μ
k
∂
H
y
∂
z
)
y
ˆ
=
0
(-\frac{\partial E_y}{\partial z}-\frac{w\mu}{k}\frac{\partial H_x}{\partial z})\text{\^x}+(\frac{\partial E_x}{\partial z}-\frac{w\mu}{k}\frac{\partial H_y}{\partial z})\text{\^y}=0
(−∂z∂Ey−kwμ∂z∂Hx)xˆ+(∂z∂Ex−kwμ∂z∂Hy)yˆ=0所以有
{
−
∂
E
y
∂
z
−
w
μ
k
∂
H
x
∂
z
=
0
∂
E
x
∂
z
−
w
μ
k
∂
H
y
∂
z
=
0
\begin{dcases} -\frac{\partial E_y}{\partial z}-\frac{w\mu}{k}\frac{\partial H_x}{\partial z}=0 \\ \\ \frac{\partial E_x}{\partial z}-\frac{w\mu}{k}\frac{\partial H_y}{\partial z}=0 \end{dcases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧−∂z∂Ey−kwμ∂z∂Hx=0∂z∂Ex−kwμ∂z∂Hy=0解得
E
y
=
−
w
μ
k
H
x
=
−
μ
ε
H
x
=
−
Z
H
x
,
E
x
=
w
μ
k
H
y
=
μ
ε
H
y
=
Z
H
y
(公式5)
\tag{公式5}E_y=-\frac{w\mu}{k}H_x=-\sqrt{\frac{\mu}{\varepsilon}} H_x=-ZH_x,E_x=\frac{w\mu}{k}H_y=\sqrt{\frac{\mu}{\varepsilon}} H_y=ZH_y
Ey=−kwμHx=−εμHx=−ZHx,Ex=kwμHy=εμHy=ZHy(公式5)Z叫做介质的特性阻抗或本质阻抗。这是一个十分重要的结果,其表示对于在各向同性介质中传播的平面时谐波,它的电场等于它的磁场乘以一个常数,同时x方向上的磁场场与y轴上面的磁场有关,反之亦然。换句话说就是电场与磁场相互垂直。如果Z是一个实数,那么电场和磁场同相。
光强和坡印廷矢量
光强定义为坡印廷矢量(一段时间内的平均,一般是周期)的大小,即光在单位时间内,通过垂直光传播方向的单位面积的能量大小。坡印廷矢量S被定义为: S = E × H \boldsymbol{S}=\boldsymbol{E}\times\boldsymbol{H} S=E×H对于一个准单色时谐场,能够用下面的式子表示(欧拉公式): E ( P , t ) = R e { U ( P ) e − i w t } = 1 2 [ U ( P ) e − i w t + U ∗ ( P ) e i w t ] \boldsymbol{E}(P,t)=Re\{\boldsymbol{U}(P)e^{-iwt}\}=\frac{1}{2}[\boldsymbol{U}(P)e^{-iwt}+\boldsymbol{U^*}(P)e^{iwt}] E(P,t)=Re{U(P)e−iwt}=21[U(P)e−iwt+U∗(P)eiwt] H ( P , t ) = R e { V ( P ) e − i w t } = 1 2 [ V ( P ) e − i w t + V ∗ ( P ) e i w t ] \boldsymbol{H}(P,t)=Re\{\boldsymbol{V}(P)e^{-iwt}\}=\frac{1}{2}[\boldsymbol{V}(P)e^{-iwt}+\boldsymbol{V^*}(P)e^{iwt}] H(P,t)=Re{V(P)e−iwt}=21[V(P)e−iwt+V∗(P)eiwt] ∗ * ∗表示复共轭。所以坡印廷矢量可以写作 S = E × H = 1 4 [ U × V e − 2 i w t + U ∗ × V + U × V ∗ + U ∗ × V ∗ e 2 i w t ] \boldsymbol{S}=\boldsymbol{E}\times\boldsymbol{H}=\frac{1}{4}[\boldsymbol{U}\times\boldsymbol{V}e^{-2iwt}+\boldsymbol{U^*}\times\boldsymbol{V}+\boldsymbol{U}\times\boldsymbol{V^*}+\boldsymbol{U^*}\times\boldsymbol{V^*}e^{2iwt}] S=E×H=41[U×Ve−2iwt+U∗×V+U×V∗+U∗×V∗e2iwt]对坡印廷矢量在一段时间上取平均是容易的。当波的震荡周期足够长的时候,上式中的时间谐波项的平均值将为0,所以对坡印廷矢量取平均有: ⟨ S ⟩ = 1 4 [ U ∗ × V + U × V ∗ ] = 1 2 R e { U × V ∗ } ⟨ \boldsymbol{S}⟩=\frac{1}{4}[\boldsymbol{U^*}\times\boldsymbol{V}+\boldsymbol{U}\times\boldsymbol{V^*}]=\frac{1}{2}Re\{\boldsymbol{U}\times\boldsymbol{V^*}\} ⟨S⟩=41[U∗×V+U×V∗]=21Re{U×V∗}考虑在 z z z轴上传播的单色平面波;磁场和电场垂直,它们同时垂直于传播方向,用公式5的结论可得: U × V ∗ = ( U x V y ∗ − U y V x ∗ ) z ˆ = k w μ ( U x U x ∗ − U y U y ∗ ) z ˆ = k w μ ∣ U ∣ 2 z ˆ = k w μ ∣ A ∣ 2 z ˆ \boldsymbol{U}\times\boldsymbol{V^*}=(U_xV_y^*-U_yV_x^*)\text{\^z}=\frac{k}{w\mu}(U_xU_x^*-U_yU_y^*)\text{\^z}=\frac{k}{w\mu}|\boldsymbol{U}|^2\text{\^z}=\frac{k}{w\mu}|\boldsymbol{A}|^2\text{\^z} U×V∗=(UxVy∗−UyVx∗)zˆ=wμk(UxUx∗−UyUy∗)zˆ=wμk∣U∣2zˆ=wμk∣A∣2zˆ所以 I = ∣ ⟨ S ⟩ ∣ = n 2 c μ ∣ A ∣ 2 = 1 2 ε μ ∣ A ∣ 2 I=|⟨ \boldsymbol{S}⟩|=\frac{n}{2c\mu}|A|^2=\frac{1}{2}\sqrt{\frac{\varepsilon}{\mu}}|A|^2 I=∣⟨S⟩∣=2cμn∣A∣2=21με∣A∣2一般的透光介质都是无磁介质,其 μ = μ 0 \mu=\mu_0 μ=μ0,所以 1 / 2 c μ 0 1/2c\mu_0 1/2cμ0是常数,我们常常忽略它,而A是场强E的振幅。光强一般被表示为 I = n ∣ E ∣ 2 I=n|E|^2 I=n∣E∣2
朗伯-比尔吸收定律
坡印廷矢量表示的是电磁能量密度的流动,但是我们真正想知道的是光强与介质之间如何作用。考虑单色平面波在一个复折射率为 n \boldsymbol{n} n的均匀介质中传播。分离折射的实部和虚部有: E = A e i k z = A e i 2 π n z / λ = A ( e − 2 π κ z / λ ) e i 2 π n z / λ E=Ae^{ikz}=Ae^{i2\pi\boldsymbol{n}z/\lambda}=A(e^{-2\pi\kappa z/\lambda})e^{i2\pi nz/\lambda} E=Aeikz=Aei2πnz/λ=A(e−2πκz/λ)ei2πnz/λ光强被重写为: I = n A 2 ( e − 4 π κ z / λ ) = I 0 e − α z I=nA^2(e^{-4\pi\kappa z/\lambda})=I_0e^{-\alpha z} I=nA2(e−4πκz/λ)=I0e−αz上式即为朗伯-比尔定理,被经验证明在均匀介质中成立。其中 I 0 = I ( z = 0 ) I_0=I(z=0) I0=I(z=0), α \alpha α是介质的吸收系数,为 α = 4 π κ λ \alpha=\frac{4\pi\kappa}{\lambda} α=λ4πκ对于弱吸收介质如光刻胶,这个吸收系数可以写作 α ≈ σ Z 0 n , 其 中 Z 0 = μ 0 ε 0 = 376.73 Ω \alpha\approx\frac{\sigma Z_0}{n},其中Z_0=\sqrt{\frac{\mu_0}{\varepsilon_0}}=376.73\varOmega α≈nσZ0,其中Z0=ε0μ0=376.73Ω电磁波按介质导电率的比例将能量传递给介质的电子。