光刻原理—数学基础(2)

该原理参考Fundamental Principles of optical Lithography

平面波

球坐标

在光刻中一般将 z z z轴的方向看做是光轴,所以有光沿着 z z z轴传播。为了方便计算,我们用 z z z轴定义一个球坐标轴。定义 θ \theta θ为光传播方向 r \boldsymbol{r} r z z z轴夹角,定义 ϕ \phi ϕ r − z r-z rz平面与x轴的夹角。在这里插入图片描述所以方向余弦 α = s i n θ c o s ϕ \alpha=sin\theta cos\phi α=sinθcosϕ β = s i n θ s i n ϕ \beta=sin\theta sin\phi β=sinθsinϕ γ = 1 − α 2 − β 2 = c o s ϕ \gamma=\sqrt{1-\alpha^2-\beta^2}=cos\phi γ=1α2β2 =cosϕ

平面波的波动方程

我们一般用电场 E \boldsymbol{E} E来描述光,对于一束单色光的电场 E \boldsymbol{E} E在任意时刻t和任意位置 P \boldsymbol{P} P处被表示为 E ( P , t ) = A ( P ) c o s ( w t + Φ ( P ) ) = R e ( U ( P ) e − i w t ) (公式1) \tag{公式1} \boldsymbol{E}( \boldsymbol{P},t)=A(\boldsymbol{P})cos(wt+\Phi(\boldsymbol{P}))=Re(\boldsymbol{U}(\boldsymbol{P})e^{-iwt}) E(P,t)=A(P)cos(wt+Φ(P))=Re(U(P)eiwt)(1)平面波是指波阵面为平面的电磁波,波阵面是在同一时刻,由空间振动相位相同的点所组成的平面,即 Φ ( P ) = \Phi(\boldsymbol{P})= Φ(P)=常数。对于在 z z z轴上沿正方向传播的平面波来说,其波动方程与x,y无关,即有 { ∂ U x ∂ t = 0 ∂ U y ∂ t = 0 \begin{dcases} \frac{\partial U_x}{\partial t}=0 \\ \\ \frac{\partial U_y}{\partial t}=0 \end{dcases} tUx=0tUy=0带入亥姆霍兹方程方程得 ∂ 2 U ( z ) ∂ z 2 + k 2 U ( z ) = 0 \frac{\partial^2 U(z)}{\partial z^2}+k^2U(z)=0 z22U(z)+k2U(z)=0解得 U ( P ) = A e − i k z U(P)=Ae^{-ikz} U(P)=Aeikz对于电场的指数表示来说,我们只是取其实部,所以指数上是负数还是正数都无所谓。所以对于传播在 Z + Z^+ Z+方向,初相位为的平面波,我们可以这样表示其相量: U ( P ) = A e i k z U(P)=Ae^{ikz} U(P)=Aeikz所以沿 z + z^+ z+方向传播的,初相位为0的平面波的波动方程为: E ( z , t ) = R e ( U ( P ) e − i w t ) = A c o s ( w t − k z ) E(z,t)=Re(U(P)e^{-iwt})=Acos(wt-kz) E(z,t)=Re(U(P)eiwt)=Acos(wtkz)我们可以将光波看做有一定形状的波,这个形状的波以时间来传播。所以在空间中的任意位置和任意时间,光波的形状都是确定的,即任意位置和时间都有相同的电场即 w t − k z = wt-kz= wtkz=常数,换句话说有: z − z 0 = w k t (公式2) \tag{公式2} z-z_0=\frac{w}{k}t zz0=kwt(2) z 0 z_0 z0是t=0时光波在 z z z轴的位置。显然有光的传播速度 v = c n = w k v=\frac{c}{n}=\frac{w}{k} v=nc=kw,又有 c = w λ / 2 π c=w\lambda/2\pi c=wλ/2π,所以有 k = w μ ε = 2 π / λ k=w\sqrt{\mu\varepsilon}=2\pi/ \lambda k=wμε =2π/λ对于在任意方向 r \boldsymbol{r} r上传播的光,其传播方向 r \boldsymbol{r} r是原点到空间中任意一点(x,y,z)的方向向量,所以平面波的电场相量被表示为: U ( x , y , z ) = A e i k ⋅ r = A e i k ( α x + β y + γ z ) U(x,y,z)=Ae^{i\boldsymbol{k}\cdot\boldsymbol{r}}=Ae^{ik(\alpha x+\beta y+\gamma z)} U(x,y,z)=Aeikr=Aeik(αx+βy+γz)其中 α , β , γ \alpha,\beta,\gamma α,β,γ为方向余弦。
为了得到平面波时间和空间的关系,我们对其磁场求其对时间求导,然后带入公式2。考虑平面波沿 z z z轴方向传播,则有 ∂ H ∂ t = − w k ∂ H ∂ z = − w k ( ∂ H x ∂ z x ˆ + ∂ H y ∂ z y ˆ ) (公式3) \tag{公式3}\frac{\partial \boldsymbol{H}}{\partial t}=-\frac{w}{k}\frac{\partial \boldsymbol{H}}{\partial z}=-\frac{w}{k}(\frac{\partial H_x}{\partial z}\text{\^x}+\frac{\partial H_y}{\partial z}\text{\^y}) tH=kwzH=kw(zHxxˆ+zHyyˆ)(3)电场也有相似的等式。电场的旋度为 ∇ × E = − ∂ E y ∂ z x ˆ + ∂ E x ∂ z y ˆ (公式4) \tag{公式4}\nabla\times\boldsymbol{E}=-\frac{\partial E_y}{\partial z}\text{\^x}+\frac{\partial E_x}{\partial z}\text{\^y} ×E=zEyxˆ+zExyˆ(4)将公式3和公式4带入重写的麦克斯韦方程 ∇ × E + μ ∂ H ∂ t = 0 \nabla\times\boldsymbol{E}+\mu\frac{\partial \boldsymbol{H}}{\partial t}=0 ×E+μtH=0得到 ( − ∂ E y ∂ z − w μ k ∂ H x ∂ z ) x ˆ + ( ∂ E x ∂ z − w μ k ∂ H y ∂ z ) y ˆ = 0 (-\frac{\partial E_y}{\partial z}-\frac{w\mu}{k}\frac{\partial H_x}{\partial z})\text{\^x}+(\frac{\partial E_x}{\partial z}-\frac{w\mu}{k}\frac{\partial H_y}{\partial z})\text{\^y}=0 (zEykwμzHx)xˆ+(zExkwμzHy)yˆ=0所以有 { − ∂ E y ∂ z − w μ k ∂ H x ∂ z = 0 ∂ E x ∂ z − w μ k ∂ H y ∂ z = 0 \begin{dcases} -\frac{\partial E_y}{\partial z}-\frac{w\mu}{k}\frac{\partial H_x}{\partial z}=0 \\ \\ \frac{\partial E_x}{\partial z}-\frac{w\mu}{k}\frac{\partial H_y}{\partial z}=0 \end{dcases} zEykwμzHx=0zExkwμzHy=0解得 E y = − w μ k H x = − μ ε H x = − Z H x , E x = w μ k H y = μ ε H y = Z H y (公式5) \tag{公式5}E_y=-\frac{w\mu}{k}H_x=-\sqrt{\frac{\mu}{\varepsilon}} H_x=-ZH_x,E_x=\frac{w\mu}{k}H_y=\sqrt{\frac{\mu}{\varepsilon}} H_y=ZH_y Ey=kwμHx=εμ Hx=ZHx,Ex=kwμHy=εμ Hy=ZHy(5)Z叫做介质的特性阻抗或本质阻抗。这是一个十分重要的结果,其表示对于在各向同性介质中传播的平面时谐波,它的电场等于它的磁场乘以一个常数,同时x方向上的磁场场与y轴上面的磁场有关,反之亦然。换句话说就是电场与磁场相互垂直。如果Z是一个实数,那么电场和磁场同相。

光强和坡印廷矢量

光强定义为坡印廷矢量(一段时间内的平均,一般是周期)的大小,即光在单位时间内,通过垂直光传播方向的单位面积的能量大小。坡印廷矢量S被定义为: S = E × H \boldsymbol{S}=\boldsymbol{E}\times\boldsymbol{H} S=E×H对于一个准单色时谐场,能够用下面的式子表示(欧拉公式): E ( P , t ) = R e { U ( P ) e − i w t } = 1 2 [ U ( P ) e − i w t + U ∗ ( P ) e i w t ] \boldsymbol{E}(P,t)=Re\{\boldsymbol{U}(P)e^{-iwt}\}=\frac{1}{2}[\boldsymbol{U}(P)e^{-iwt}+\boldsymbol{U^*}(P)e^{iwt}] E(P,t)=Re{U(P)eiwt}=21[U(P)eiwt+U(P)eiwt] H ( P , t ) = R e { V ( P ) e − i w t } = 1 2 [ V ( P ) e − i w t + V ∗ ( P ) e i w t ] \boldsymbol{H}(P,t)=Re\{\boldsymbol{V}(P)e^{-iwt}\}=\frac{1}{2}[\boldsymbol{V}(P)e^{-iwt}+\boldsymbol{V^*}(P)e^{iwt}] H(P,t)=Re{V(P)eiwt}=21[V(P)eiwt+V(P)eiwt] ∗ * 表示复共轭。所以坡印廷矢量可以写作 S = E × H = 1 4 [ U × V e − 2 i w t + U ∗ × V + U × V ∗ + U ∗ × V ∗ e 2 i w t ] \boldsymbol{S}=\boldsymbol{E}\times\boldsymbol{H}=\frac{1}{4}[\boldsymbol{U}\times\boldsymbol{V}e^{-2iwt}+\boldsymbol{U^*}\times\boldsymbol{V}+\boldsymbol{U}\times\boldsymbol{V^*}+\boldsymbol{U^*}\times\boldsymbol{V^*}e^{2iwt}] S=E×H=41[U×Ve2iwt+U×V+U×V+U×Ve2iwt]对坡印廷矢量在一段时间上取平均是容易的。当波的震荡周期足够长的时候,上式中的时间谐波项的平均值将为0,所以对坡印廷矢量取平均有: ⟨ S ⟩ = 1 4 [ U ∗ × V + U × V ∗ ] = 1 2 R e { U × V ∗ } ⟨ \boldsymbol{S}⟩=\frac{1}{4}[\boldsymbol{U^*}\times\boldsymbol{V}+\boldsymbol{U}\times\boldsymbol{V^*}]=\frac{1}{2}Re\{\boldsymbol{U}\times\boldsymbol{V^*}\} S=41[U×V+U×V]=21Re{U×V}考虑在 z z z轴上传播的单色平面波;磁场和电场垂直,它们同时垂直于传播方向,用公式5的结论可得: U × V ∗ = ( U x V y ∗ − U y V x ∗ ) z ˆ = k w μ ( U x U x ∗ − U y U y ∗ ) z ˆ = k w μ ∣ U ∣ 2 z ˆ = k w μ ∣ A ∣ 2 z ˆ \boldsymbol{U}\times\boldsymbol{V^*}=(U_xV_y^*-U_yV_x^*)\text{\^z}=\frac{k}{w\mu}(U_xU_x^*-U_yU_y^*)\text{\^z}=\frac{k}{w\mu}|\boldsymbol{U}|^2\text{\^z}=\frac{k}{w\mu}|\boldsymbol{A}|^2\text{\^z} U×V=(UxVyUyVx)zˆ=wμk(UxUxUyUy)zˆ=wμkU2zˆ=wμkA2zˆ所以 I = ∣ ⟨ S ⟩ ∣ = n 2 c μ ∣ A ∣ 2 = 1 2 ε μ ∣ A ∣ 2 I=|⟨ \boldsymbol{S}⟩|=\frac{n}{2c\mu}|A|^2=\frac{1}{2}\sqrt{\frac{\varepsilon}{\mu}}|A|^2 I=S=2cμnA2=21με A2一般的透光介质都是无磁介质,其 μ = μ 0 \mu=\mu_0 μ=μ0,所以 1 / 2 c μ 0 1/2c\mu_0 1/2cμ0是常数,我们常常忽略它,而A是场强E的振幅。光强一般被表示为 I = n ∣ E ∣ 2 I=n|E|^2 I=nE2

朗伯-比尔吸收定律

坡印廷矢量表示的是电磁能量密度的流动,但是我们真正想知道的是光强与介质之间如何作用。考虑单色平面波在一个复折射率为 n \boldsymbol{n} n的均匀介质中传播。分离折射的实部和虚部有: E = A e i k z = A e i 2 π n z / λ = A ( e − 2 π κ z / λ ) e i 2 π n z / λ E=Ae^{ikz}=Ae^{i2\pi\boldsymbol{n}z/\lambda}=A(e^{-2\pi\kappa z/\lambda})e^{i2\pi nz/\lambda} E=Aeikz=Aei2πnz/λ=A(e2πκz/λ)ei2πnz/λ光强被重写为: I = n A 2 ( e − 4 π κ z / λ ) = I 0 e − α z I=nA^2(e^{-4\pi\kappa z/\lambda})=I_0e^{-\alpha z} I=nA2(e4πκz/λ)=I0eαz上式即为朗伯-比尔定理,被经验证明在均匀介质中成立。其中 I 0 = I ( z = 0 ) I_0=I(z=0) I0=I(z=0), α \alpha α是介质的吸收系数,为 α = 4 π κ λ \alpha=\frac{4\pi\kappa}{\lambda} α=λ4πκ对于弱吸收介质如光刻胶,这个吸收系数可以写作 α ≈ σ Z 0 n , 其 中 Z 0 = μ 0 ε 0 = 376.73 Ω \alpha\approx\frac{\sigma Z_0}{n},其中Z_0=\sqrt{\frac{\mu_0}{\varepsilon_0}}=376.73\varOmega αnσZ0,Z0=ε0μ0 =376.73Ω电磁波按介质导电率的比例将能量传递给介质的电子。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

棘。。背凉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值