2025年深圳杯-东三省联赛D题超详细解题思路第二种思路

D题  法医物证多人身份鉴定问题

问题背景

犯罪现场法医物证鉴定是关系到国家安全、公共安全、人民生命财产安全和社会稳定的重大问题。目前法医物证鉴定依赖DNA分析技术不断提升。DNA检验的核心是STR(Short Tandem Repeat,短串联重复序列)分析技术,STR的核心序列重复次数存在个体差异多态性,因此STR也被称为细胞的DNA指纹。

STR基因座是染色体上一个特定的物理位置,等位基因是同一基因座上不同表现形式的DNA序列。在STR图谱中,每一个主峰代表一个等位基因,其size表示该STR等位基因的DNA片段长度,不同size对应不同的等位基因,height是峰高,反映该等位基因的DNA量,可用于判断样本是否为混合样本。每个个体在每个基因座上拥有两个等位基因,基因型指的是个体基因座上等位基因的组合,不同个体的基因型常不同,因此可检查特定基因座上的基因型来进行身份鉴定。

对于多人犯罪案件中的DNA物证,其混合STR图谱的分析是案件侦破的关键。混合STR图谱中包含了多人的DNA信息,需要正确分析混合数据中各组分的贡献者构成和比例,作为案情判断依据之一。

问题1分析:贡献者人数识别

问题1 混合STR图谱分析的首要问题是判断贡献者人数。贡献者人数的正确与否决定着分析结果的准确率。依据附件1中混合STR图谱数据(如图1所示)设计算法或模型,用于识别某一混合样本中的贡献者人数,并评估其准确性。

问题目标:识别混合STR图谱中的贡献者人数。贡献者人数是正确分析混合图谱的基础。

问题挑战:混合样本中的每个STR峰值代表不同贡献者的等位基因,随着贡献者人数增加,图谱会变得更加复杂。关键问题在于如何判断图谱中有多少个不同的贡献者,而不会误判为更少或更多的人。

求解思路:

数据包含多个Sample File,每个Sample File对应16个不同的Marker,每个Marker有多个Size和Height值。由于样本是混合的,因此每个样本的STR图谱中会有多个峰值,每个峰值对应于一个等位基因(代表贡献者的基因信息)。这些不同的峰值可以帮助我们推测每个混合样本中的贡献者人数。然而,峰值数量并不完全等于贡献者人数,因为可能存在一些混合样本中,多个贡献者的DNA片段大小重叠,导致难以精确区分。贡献者人数的估算应当结合图谱的其他特征,特别是峰值的大小(height)和size。

1、基于峰值数量的识别:

利用图谱中的峰值数量作为初步判断依据。每个等位基因的峰值数量可以帮助推测贡献者的数量。例如,两个贡献者通常会有两个主峰,而三个贡献者会有三个主峰。结合混合样本的复杂度,应用机器学习方法(如聚类算法(DBSCAN)或主成分分析)来自动识别贡献者人数。

2、基于统计学分析的判定:

利用最大似然估计(MLE)方法,在给定样本数据的情况下,求解最佳的贡献者人数。

图片

图片

图片

问题2分析:贡献者比例推断

问题2 在分析出贡献者人数后,还需要判断各贡献者的混合比例。当贡献者比例接近时,等位基因可能重叠,导致误判基因型。明确比例有助于更精准地分析混合图谱。依据附件2中混合ST图谱数据(如图2所示)设计算法或模型,用于识别某一混合样本中的贡献者比例,并评估其准确性。

问题目标:在识别贡献者人数的基础上,推断每个贡献者在混合图谱中的贡献比例。比例的准确性对于进一步的基因型分析至关重要。

问题挑战:当两个或多个贡献者的比例接近时,图谱中的等位基因可能会重叠,导致对基因型的误判。因此,需要精确计算每个贡献者的贡献比例。

求解思路:

1、定量分析:

利用已知的贡献者人数和图谱中的峰值数量,我们可以推算每个贡献者的贡献比例。

可以通过峰值的高度来推算每个贡献者在混合样本中的贡献比例。一般来说,较高的峰值对应DNA量较大的贡献者,较小的峰值则可能代表贡献较少的贡献者。

2、迭代算法:

使用迭代优化方法,如期望最大化(EM)算法,来逐步估算贡献者的比例。通过多次计算和修正,得到各贡献者的最终比例。

峰值高度与DNA比例的关系:假设每个贡献者的DNA量在混合样本中对峰值的高度有影响。可以通过峰值的相对高度来估算每个贡献者的比例。

迭代优化:EM算法可以帮助我们通过迭代计算最优的贡献者比例,进而推算出每个贡献者对样本的贡献度。

问题3分析:基因型推断

问题3 根据附件1与附件2的混合STR图谱数据以及附件3中各个贡献者的基因型,设计算法或模型,用于推断某一混合STR图谱中各个贡献者对应的基因型,并评估其准确性。

问题目标:根据贡献者人数和贡献比例,推断每个贡献者的基因型。

问题挑战:基因型的推断需要结合混合图谱和已知的贡献者基因型数据,解决如何在多人的混合图谱中正确识别出每个贡献者的等位基因组合。

求解思路:

1、数据对比法:将混合图谱与已知贡献者的基因型数据库进行比对。通过匹配图谱中出现的等位基因的大小和位置,推测出每个贡献者的基因型。

2、机器学习模型:训练一个监督学习模型(如随机森林或支持向量机),利用已知基因型的样本数据进行训练,从而预测混合样本中贡献者的基因型。

问题4分析:降噪处理

问题4 依据附件4中混合STR图谱数据(如图3所示)设计算法或模型,用于减少混合样本中噪声的干扰,以提高混合样本分析的准确性。(降噪)

问题目标:减少混合STR图谱中的噪声,以提高分析准确性。

问题挑战:混合样本中可能存在噪声(如PCR误差或基因型不完全清晰的情况),这些噪声会干扰正确分析。降噪处理有助于提高图谱解析的准确性和可靠性。

求解思路:

1、信号滤波:

利用小波变换(Wavelet Transform)或其他信号处理技术对STR图谱进行平滑处理,去除噪声信号。

2、深度学习降噪:

使用深度神经网络(如自编码器)进行降噪。自编码器能够从输入的噪声图谱中提取出重要的特征信息,从而还原出较为清晰的基因型图谱。

1、噪声过滤法

通过对图谱进行平滑、去噪或模糊处理,减少高频噪声的干扰。

注:该问题只是一个简单的思路,目前正在代码的优化以及全篇论文的写作。具体完整代码与完整论文稍后全部完成会进行发布。

后续方法和思路持续更新中,会对方法进行优化操作ing。

很抱歉,我无法提供2023深圳东三省)数学建模ABC的具体思路和代码。根据您引用的内容,第一条引用是关于影响城市居民身体健康因素的分析,第二条引用是关于初步选建议及思路,第三条引用是关于2020东三省数学建模A的论文展示和包含的问解决 Matlab 和 Python 代码。由于我无法获取具体的目内容和考察要求,所以无法提供关于2023深圳数学建模ABC思路和代码。建议您参考相关的数学建模教材和资料,或咨询老师和同学获得更准确的答案。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2023深圳东三省)数学建模ABC思路及代码](https://blog.csdn.net/smppbzyc/article/details/131966041)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [2020东三省数学建模A新冠病毒疫情论文](https://download.csdn.net/download/qq_40957277/19779291)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值