矩阵合同的本质

经过漫长的学习,我总算是理解了矩阵相似与线性变换。但是头上有两个疑惑,那就是合同。合同这个东西在对称矩阵中与相似有了交集,加上定义的相似性,我实在是困惑的很。

矩阵合同与相似中,我算是搞明白了矩阵相似指的是同一线性变换在不同基下的不同表示。但是矩阵合同指的是是同一个双线性形在不同基下的矩阵我一直没有搞懂。探索性地学一下,不是职业修仙,当个散修~

双线性型

在基 { e 1 , e 2 , . . . e n } \{e_1,e_2,...e_n\} {e1,e2,...en}下有两个向量 v v v w w w,

其中:

v = x 1 e 1 + x 2 e 2 + . . . . x n e n w = y 1 e 1 + y 2 e 2 + . . . . y n e n v = x_1 e_1+x_2e_2+....x_ne_n \\ w=y_1e_1+y_2e_2+....y_ne_n v=x1e1+x2e2+....xnenw=y1e1+y2e2+....ynen

求两个向量的内积(dot product)怎么算?

⟨ v , w ⟩ = x 1 e 1 + x 2 e 2 + . . . . x n e n ? n o n o n o . . . . \langle v,w \rangle=x_1 e_1+x_2 e_2+.... x_ne_n? nonono.... v,w=x1e1+x2e2+....xnen?nonono....

那是在基 { e 1 , e 2 , . . . e n } \{e_1,e_2,...e_n\} {e1,e2,...en}是标准正交基的前提下,向量正交只要 ⟨ e i , e j ⟩ = 0 ( i ≠ j ) \langle e_i,e_j \rangle =0 (i \ne j) ei,ej=0(i=j)

加入基 { e 1 , e 2 , . . . e n } \{e_1,e_2,...e_n\} {e1,e2,...en}不是标准正交基呢?

那么先做个习题:

( 1 + 2 x ⃗ ) ( 1 − 3 x ⃗ ) = 1 + 2 x ⃗ − 3 x ⃗ − 6 ⟨ x ⃗ , y ⃗ ⟩ (1+2 \vec x)(1-3 \vec x) =1+2\vec x-3\vec x-6 \langle \vec x, \vec y\rangle (1+2x )(13x )=1+2x 3x 6x ,y

类似的,这里的 x i , y i x_i,y_i xi,yi都是常数。

那么:

⟨ v , w ⟩ = ( x 1 e 1 + x 2 e 2 + . . . . x n e n ) ( y 1 e 1 + y 2 e 2 + . . . . y n e n ) = ( x 1 , x 2 , . . . x n ) ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) [ y 1 y 2 . . . y n ] = x T A n × n y ( 其 中 : a i j = ⟨ e i , e j ⟩ ) \langle v,w \rangle= (x_1 e_1+x_2e_2+....x_ne_n)(y_1e_1+y_2e_2+....y_ne_n) = \\ (x_1,x_2,...x_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{bmatrix}y_1 \\ y_2 \\... \\y_n \end{bmatrix} =x^T A_{n \times n} y (其中:a_{ij} = \langle e_i, e_j \rangle) v,w=(x1e1+x2e2+....xnen)(y1e1+y2e2+....ynen)=(x1,x2,...xn)a11a21an1a12a22an2a1na2nanny1y2...yn=xTAn×ny(aij=ei,ej)

双线性型就是在一般基下的向量内积(叫做其中 A A A内积度量矩阵,可以发现 A A A是对称矩阵)

这样计算内积比上面那个形式对于计算机而言计算方便。

那么其中: a i j = ⟨ e i , e j ⟩ = ⟨ e j , e i ⟩ = a j i a_{ij} = \langle e_i, e_j \rangle = \langle e_j, e_i \rangle =a_{ji} aij=ei,ej=ej,ei=aji

因此上面的:

⟨ v , w ⟩ = ∑ i = 1 n ∑ j = 1 n x i y j ⟨ e i , e j ⟩ \langle v,w \rangle= \sum _{i=1}^n \sum_{j=1}^{n} x_i y_j \langle e_i, e_j \rangle v,w=i=1nj=1nxiyjei,ej

那如果换一组基,那个矩阵B= ( ⟨ ϵ i , ϵ j ⟩ ) (\langle \epsilon_i, \epsilon_j \rangle) (ϵi,ϵj)与矩阵A合同。注意,不带 x T , y x^T ,y xT,y

二次型

二次型是双线型的特例,即

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值