视觉SLAM十四讲学习5 位姿估计(2)本质矩阵的计算

前言

本篇详细推导对极几何中,本质矩阵的计算。

本质矩阵的性质

根据上篇的内容,由对极几何约束获得相邻帧相对位姿与匹配点坐标的关系:
P 2 T t ∧ R P 1 = 0 p 2 T K − T t ∧ R K − 1 p 1 = 0 P_2^Tt^\land RP_1 = 0 \\ \quad \\ p_2^TK^{-T}t^\land R K^{-1}p_1 = 0 P2TtRP1=0p2TKTtRK1p1=0

①对于本质矩阵 E = t ∧ R E=t^\land R E=tR,原本有旋转+位移六个自由度,但是等式右边为零,乘以任意尺度等式都成立,因此方程缺少尺度约束,减去一个自由度,共五个自由度。

②本质矩阵有一个内在性质:奇异值必为 σ , σ , 0 {\sigma,\sigma,0} σ,σ,0的形式。

性质②需要进行证明:

首先,对于奇数阶反对称矩阵 A A A,必不满秩:
A T = − A ∣ A T ∣ = ∣ − A ∣ ∣ A ∣ = ( − 1 ) n ∣ A ∣ = − ∣ A ∣ → ∣ A ∣ = 0 A^T=-A \\ |A^T|=|-A|\\ |A|=(-1)^n|A|=-|A| \to |A|=0 AT=AAT=AA=(1)nA=AA=0
任意 n n n阶反对称矩阵合同于矩阵
d i a g { [ 0 1 − 1 0 ] , [ 0 1 − 1 0 ] , … [ 0 1 − 1 0 ] , 0 , 0 , … , 0 } diag\{\begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} , \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix}, \dots \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix}, 0, 0 ,\dots , 0 \} diag{ [0110],[0110],[0110],0,0,,0}
并正交相似于
d i a g { [ 0 a 1 − a 1 0 ] , [ 0 a 2 − a 2 0 ] , … [ 0 a r − a r 0 ] , 0 , 0 , … , 0 } diag\{\begin{bmatrix}0 & a_1 \\ -a_1 & 0 \end{bmatrix} , \begin{bmatrix}0 & a_2 \\ -a_2 & 0 \end{bmatrix}, \dots \begin{bmatrix}0 & a_r \\ -a_r & 0 \end{bmatrix}, 0, 0 ,\dots , 0 \} diag{ [0a1a10],[0a2a20],[0arar0],0,0,,0}
因此,反对称矩阵的秩必为偶数,则三阶非零反对称矩阵 A A A的秩必为2,可将 A A A分解:
A = U [ 0 a 1 0 − a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值