前言
本篇详细推导对极几何中,本质矩阵的计算。
本质矩阵的性质
根据上篇的内容,由对极几何约束获得相邻帧相对位姿与匹配点坐标的关系:
P 2 T t ∧ R P 1 = 0 p 2 T K − T t ∧ R K − 1 p 1 = 0 P_2^Tt^\land RP_1 = 0 \\ \quad \\ p_2^TK^{-T}t^\land R K^{-1}p_1 = 0 P2Tt∧RP1=0p2TK−Tt∧RK−1p1=0
①对于本质矩阵 E = t ∧ R E=t^\land R E=t∧R,原本有旋转+位移六个自由度,但是等式右边为零,乘以任意尺度等式都成立,因此方程缺少尺度约束,减去一个自由度,共五个自由度。
②本质矩阵有一个内在性质:奇异值必为 σ , σ , 0 {\sigma,\sigma,0} σ,σ,0的形式。
性质②需要进行证明:
首先,对于奇数阶反对称矩阵 A A A,必不满秩:
A T = − A ∣ A T ∣ = ∣ − A ∣ ∣ A ∣ = ( − 1 ) n ∣ A ∣ = − ∣ A ∣ → ∣ A ∣ = 0 A^T=-A \\ |A^T|=|-A|\\ |A|=(-1)^n|A|=-|A| \to |A|=0 AT=−A∣AT∣=∣−A∣∣A∣=(−1)n∣A∣=−∣A∣→∣A∣=0
任意 n n n阶反对称矩阵合同于矩阵
d i a g { [ 0 1 − 1 0 ] , [ 0 1 − 1 0 ] , … [ 0 1 − 1 0 ] , 0 , 0 , … , 0 } diag\{\begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix} , \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix}, \dots \begin{bmatrix}0 & 1 \\ -1 & 0 \end{bmatrix}, 0, 0 ,\dots , 0 \} diag{
[0−110],[0−110],…[0−110],0,0,…,0}
并正交相似于
d i a g { [ 0 a 1 − a 1 0 ] , [ 0 a 2 − a 2 0 ] , … [ 0 a r − a r 0 ] , 0 , 0 , … , 0 } diag\{\begin{bmatrix}0 & a_1 \\ -a_1 & 0 \end{bmatrix} , \begin{bmatrix}0 & a_2 \\ -a_2 & 0 \end{bmatrix}, \dots \begin{bmatrix}0 & a_r \\ -a_r & 0 \end{bmatrix}, 0, 0 ,\dots , 0 \} diag{
[0−a1a10],[0−a2a20],…[0−arar0],0,0,…,0}
因此,反对称矩阵的秩必为偶数,则三阶非零反对称矩阵 A A A的秩必为2,可将 A A A分解:
A = U [ 0 a 1 0 − a