pytorch中BatchNorm2d的实验验证

文章详细解释了BatchNorm2d层的工作原理,包括如何使用当前批次的均值和标准差进行归一化,以及在训练和测试阶段运行均值和方差的更新。通过PyTorch代码示例,验证了批量归一化的计算过程和running_mean、running_var的更新公式。此外,还讨论了track_running_stats参数对测试阶段的影响。
摘要由CSDN通过智能技术生成

BatchNorm2d

对二维矩阵进行批量归一化,mean为当前batch的均值,std为当前batch的标准差,使用批量归一化能够将取值范围不同的数据映射到标准正态分布的区间中,减少数据之间的差距,方便模型快速收敛。批量归一化本质上减少了样本之间的绝对误差,但不改变相对误差,比如对[1,2,3,4]做归一化,虽然数字大小变了,但数字之间的大小关系不会变。一般建议在卷积核后面接一个批量归一化

公式

  • 归一化公式
    在这里插入图片描述

  • 全局均值估计:running_mean全局方差估计:running_var
    x n e w = ( 1 − m o m e n t u m ) × x o l d + m o m e n t u m × x t x_{new}=(1-momentum) \times x_{old}+momentum \times x_{t} xnew=(1momentum)×xold+momentum×xt
    x n e w x_{new} xnew为更新后的running_mean/running_var x o l d x_{old} xold为更新前的running_mean/running_var x t x_{t} xt为当前batch的mean和varmomentum为权重因子,一般取0.1

  • pytorch中使用BatchNorm2d
    batchnorm=torch.nn.BatchNorm2d(num_features=通道的数量)
    不建议更改其他参数

关于BatchNorm2d的实验验证

  • 归一化公式的验证
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as opti
from torchvision.transforms import RandomRotation
import torchsummary
import time
import datetime
import numpy as np
import copy
import torch.nn as nn
data=torch.tensor(
   [[[[1,2],
    [3,4]]]],dtype=torch.float32
)
batchnorm=nn.BatchNorm2d(num_features=1,momentum=0.1)
print('------------1--------------')
print("初始状态下的running_mean,running_var")
print(batchnorm.running_mean)
print(batchnorm.running_var)
print('------------2--------------')
print("输入data后状态下的running_mean,running_var")
test=batchnorm(data)
print(batchnorm.running_mean)
print(batchnorm.running_var)
print('训练状态下对data进行batchNorm')
print(test)
print('手动计算的batchNorm')
mean=torch.mean(data)
std=torch.var(data,False)
print((data[0][0]-mean)/torch.sqrt(std+1e-5))

结论,归一化的mean和std都是当前batch的mean和std

  • running_meanrunning_var的公式验证
print('------------3--------------')
print("人工计算的running_mean,running_var")
running_mean=torch.tensor(0)
running_var=torch.tensor(1)
running_mean=0.9*running_mean+0.1*mean
running_var=0.9*running_var+0.1*std
print(running_mean)
print(running_var)

print('测试状态下对data进行batchNorm')
batchnorm.training=False
test=batchnorm(data)
print(test)
#得出如下结论:
#running_mean=(1-momentum)*running_mean+momentum*batch_mean
#running_var=(1-momentum)*running_var+momentum*batch_var

running_mean和running_var只对测试有影响,对训练没有任何影响,测试数据使用running_meanrunning_var进行归一化

  • 当track_running_stats=False时的影响
print('------------4--------------')
print('track_running_stats设置为False时,输入data前得running_mean,running_var')
batchnorm=nn.BatchNorm2d(num_features=1,momentum=0.1,track_running_stats=False)
print(batchnorm.running_mean)
print(batchnorm.running_var)
print('------------5--------------')
print('track_running_stats设置为False时,输入data后得running_mean,running_var')
test=batchnorm(data)
print(batchnorm.running_mean)
print(batchnorm.running_var)
print('------------6--------------')
print('track_running_stats设置为False时,训练状态下对data进行batchnorm')
print(test)
print('------------7--------------')
print('track_running_stats设置为False时,测试状态下对data进行batchnorm')
batchnorm.training=False
test=batchnorm(data)
print(test)
#得出如下结论
#running_mean和running_var是用于对测试集进行归一化,如果track_running_stats设置为False,则测试集进行归一化时不会使用running_mean和running_var
#而是直接用自身得mean和std

不要将track_running_stats设置为False

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UNet是一种用于图像分割的卷积神经网络结构,它可以用于医学图像分割、自然图像分割等领域。下面我来介绍如何使用PyTorch实现UNet图像分割。 1. 准备数据 首先,你需要准备好图像分割的数据集。这个数据集需要包括原始图像和对应的分割掩码图像。你可以使用任何你熟悉的数据集,比如Kaggle上的数据集,或者自己制作的数据集。 2. 定义UNet模型 接下来,你需要定义UNet模型。UNet模型由编码器和解码器两部分组成,编码器用于提取图像特征,解码器用于将特征映射回分割掩码图像。下面是一个简单的UNet模型实现: ```python import torch import torch.nn as nn class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() # 编码器 self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 64, 3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(128, 128, 3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.relu4 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(2, 2) self.conv5 = nn.Conv2d(128, 256, 3, padding=1) self.bn5 = nn.BatchNorm2d(256) self.relu5 = nn.ReLU(inplace=True) self.conv6 = nn.Conv2d(256, 256, 3, padding=1) self.bn6 = nn.BatchNorm2d(256) self.relu6 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(2, 2) self.conv7 = nn.Conv2d(256, 512, 3, padding=1) self.bn7 = nn.BatchNorm2d(512) self.relu7 = nn.ReLU(inplace=True) self.conv8 = nn.Conv2d(512, 512, 3, padding=1) self.bn8 = nn.BatchNorm2d(512) self.relu8 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(2, 2) self.conv9 = nn.Conv2d(512, 1024, 3, padding=1) self.bn9 = nn.BatchNorm2d(1024) self.relu9 = nn.ReLU(inplace=True) self.conv10 = nn.Conv2d(1024, 1024, 3, padding=1) self.bn10 = nn.BatchNorm2d(1024) self.relu10 = nn.ReLU(inplace=True) # 解码器 self.upconv1 = nn.ConvTranspose2d(1024, 512, 2, stride=2) self.conv11 = nn.Conv2d(1024, 512, 3, padding=1) self.bn11 = nn.BatchNorm2d(512) self.relu11 = nn.ReLU(inplace=True) self.conv12 = nn.Conv2d(512, 512, 3, padding=1) self.bn12 = nn.BatchNorm2d(512) self.relu12 = nn.ReLU(inplace=True) self.upconv2 = nn.ConvTranspose2d(512, 256, 2, stride=2) self.conv13 = nn.Conv2d(512, 256, 3, padding=1) self.bn13 = nn.BatchNorm2d(256) self.relu13 = nn.ReLU(inplace=True) self.conv14 = nn.Conv2d(256, 256, 3, padding=1) self.bn14 = nn.BatchNorm2d(256) self.relu14 = nn.ReLU(inplace=True) self.upconv3 = nn.ConvTranspose2d(256, 128, 2, stride=2) self.conv15 = nn.Conv2d(256, 128, 3, padding=1) self.bn15 = nn.BatchNorm2d(128) self.relu15 = nn.ReLU(inplace=True) self.conv16 = nn.Conv2d(128, 128, 3, padding=1) self.bn16 = nn.BatchNorm2d(128) self.relu16 = nn.ReLU(inplace=True) self.upconv4 = nn.ConvTranspose2d(128, 64, 2, stride=2) self.conv17 = nn.Conv2d(128, 64, 3, padding=1) self.bn17 = nn.BatchNorm2d(64) self.relu17 = nn.ReLU(inplace=True) self.conv18 = nn.Conv2d(64, 64, 3, padding=1) self.bn18 = nn.BatchNorm2d(64) self.relu18 = nn.ReLU(inplace=True) self.conv19 = nn.Conv2d(64, 1, 1) def forward(self, x): # 编码器 x1 = self.relu1(self.bn1(self.conv1(x))) x2 = self.relu2(self.bn2(self.conv2(x1))) x3 = self.relu3(self.bn3(self.conv3(self.pool1(x2)))) x4 = self.relu4(self.bn4(self.conv4(x3))) x5 = self.relu5(self.bn5(self.conv5(self.pool2(x4)))) x6 = self.relu6(self.bn6(self.conv6(x5))) x7 = self.relu7(self.bn7(self.conv7(self.pool3(x6)))) x8 = self.relu8(self.bn8(self.conv8(x7))) x9 = self.relu9(self.bn9(self.conv9(self.pool4(x8)))) x10 = self.relu10(self.bn10(self.conv10(x9))) # 解码器 x = self.relu11(self.bn11(self.conv11(torch.cat([x8, self.upconv1(x10)], 1)))) x = self.relu12(self.bn12(self.conv12(x))) x = self.relu13(self.bn13(self.conv13(torch.cat([x6, self.upconv2(x)], 1)))) x = self.relu14(self.bn14(self.conv14(x))) x = self.relu15(self.bn15(self.conv15(torch.cat([x4, self.upconv3(x)], 1)))) x = self.relu16(self.bn16(self.conv16(x))) x = self.relu17(self.bn17(self.conv17(torch.cat([x2, self.upconv4(x)], 1)))) x = self.relu18(self.bn18(self.conv18(x))) x = self.conv19(x) return x ``` 在这个模型,UNet有5个下采样层和5个上采样层。每个下采样层由两个卷积层和一个最大池化层组成,每个上采样层由一个转置卷积层和两个卷积层组成。 3. 定义损失函数和优化器 接下来,你需要定义损失函数和优化器。在图像分割任务,我们通常使用交叉熵损失函数。优化器可以选择Adam、SGD等。 ```python import torch.optim as optim criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 4. 训练模型 最后,你可以开始训练模型了。你需要将数据集分成训练集和验证集,然后使用PyTorch的DataLoader加载数据集,并在每个epoch训练模型。 ```python from torch.utils.data import DataLoader train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=4, shuffle=True) for epoch in range(num_epochs): train_loss = 0 val_loss = 0 # 训练模型 model.train() for images, masks in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, masks) loss.backward() optimizer.step() train_loss += loss.item() # 验证模型 model.eval() with torch.no_grad(): for images, masks in val_loader: outputs = model(images) loss = criterion(outputs, masks) val_loss += loss.item() train_loss /= len(train_loader) val_loss /= len(val_loader) print('Epoch: {}, Train Loss: {}, Val Loss: {}'.format(epoch+1, train_loss, val_loss)) ``` 在训练过程,你可以在每个epoch后计算训练集和验证集的损失,并输出训练结果。训练完成后,你可以保存模型并在测试集上进行测试。 这就是使用PyTorch实现UNet图像分割的基本流程。当然,你可以根据自己的需求调整模型结构、损失函数和优化器等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值