PCL 统计滤波去除离群点

滤波步骤:

1.遍历点云计算每个点附近的K个点之间的平均距离,再对所有点的平均距离计算其均值E和标准差\sigma,标准差反映所有点的K邻域的平均距离分布的离散程度。

2.确定滤波阈值,阈值=E+p*\sigma;p为需要设置的参数。

3.再遍历点云中的每个点,比较其K个点邻域的平均距离是否大于阈值,大于则认为是离群点,删除。

代码:

#include <pcl/filters/statistical_outlier_removal.h>

void sor_filter(pcl::PointCloud<pcl::PointXYZI>::Ptr& src)
{
   //滤波离群点
   pcl::StatisticalOutlierRemoval<pcl::PointXYZI> sor;
   sor.setInputCloud(src);
   sor.setMeanK(50);  // 设置在计算每个点的邻近点时使用的邻近点数量 指定用于计算每个点邻近点的数量。较小的值将更严格地过滤点。
   sor.setStddevMulThresh(1.0);  // 设置标准差乘数阈值,用于确定哪些点被认为是噪声。
   sor.filter(*src);
}

### CloudCompare 中使用 SOR 方法去除点云数据中的离群点 在 CloudCompare 软件中实现统计离群点移除 (Statistical Outlier Removal, SOR),可以通过插件或脚本方式完成。然而,CloudCompare 自身并不直接提供名为 SOR 的工具选项,但可以利用其强大的过滤功能来达到相同效果。 对于 SOR 滤波而言,主要原理在于删除那些与周围大多数点相距甚远的点[^4]。具体来说: - **nb_neighbors 参数**决定了计算某一点到其他最近邻点之间的平均距离时考虑多少个邻居; - **std_ratio 参数**用于设定一个基于这些平均距离标准差的阈值水平;只有当某个点的距离超过此阈值时才会被认定为异常并予以剔除。 尽管 CloudCompare 不像 PCL 库那样内置了专门针对 SOR 的函数接口,仍然能够通过自定义查询条件配合体素网格或其他空间索引结构间接达成目的。一种可行的方法是在 CloudCompare 内部编写 C++ 插件或者 Python 脚本来模拟这一过程。 如果倾向于更简便的操作路径,则建议先将原始点云导出至外部程序(如PCL),运用成熟的库函数实施 SOR 处理后再重新导入回 CloudCompare 继续后续工作流。 ```cpp // 示例代码展示如何用C++实现简单的SOR滤波逻辑 #include <pcl/filters/statistical_outlier_removal.h> void applySORFilter(pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr output_cloud, int nb_neighbors = 20, double std_ratio = 1.0){ pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor; sor.setInputCloud(input_cloud); sor.setMeanK(nb_neighbors); // 设置k近邻数量 sor.setStddevMulThresh(std_ratio); // 设定倍数乘以标准差作为阈值 sor.filter(*output_cloud); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值