参考来源:https://zhuanlan.zhihu.com/p/102748557
首先用最简单的,半径距离筛选大部分离群点`
#include <pcl/filters/radius_outlier_removal.h>
球半径滤波器与统计滤波器相比更加简单粗暴。
以某点为中心 画一个球计算落在该球内的点的数量,当数量大于给定值时,
则保留该点,数量小于给定值则剔除该点。
此算法运行速度快,依序迭代留下的点一定是最密集的,
但是球的半径和球内点的数目都需要人工指定。
// 创建点云对象 指针
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
// 源点云读取 获取 后
pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem; //创建滤波器
outrem.setInputCloud(cloud); //设置输入点云
outrem.setRadiusSearch(0.8); //设置半径为0.8的范围内找临近点
outrem.setMinNeighborsInRadius (2);//设置查询点的邻域点集数小于2的删除
// apply filter
outrem.filter (*cloud_filtered);//执行条件滤波 在半径为0.8 在此半径内必须要有两个邻居点,此点才会保存
然后再使用统计的方法再过滤一遍,基本就很干净了
#include <pcl/filters/statistical_outlier_removal.h>
统计滤波器用于去除明显离群点(离群点往往由测量噪声引入)。
其特征是在空间中分布稀疏,可以理解为:每个点都表达一定信息量,
某个区域点越密集则可能信息量越大。噪声信息属于无用信息,信息量较小。
所以离群点表达的信息可以忽略不计。考虑到离群点的特征,
则可以定义某处点云小于某个密度,既点云无效。计算每个点到其最近的k(设定)个点平均距离
。则点云中所有点的距离应构成高斯分布。给定均值与方差,可剔除n个∑之外的点
激光扫描通常会产生密度不均匀的点云数据集,另外测量中的误差也会产生稀疏的离群点,
此时,估计局部点云特征(例如采样点处法向量或曲率变化率)时运算复杂,
这会导致错误的数值,反过来就会导致点云配准等后期的处理失败。
解决办法:对每个点的邻域进行一个统计分析,并修剪掉一些不符合标准的点。
具体方法为在输入数据中对点到临近点的距离分布的计算,对每一个点,
计算它到所有临近点的平均距离(假设得到的结果是一个高斯分布,
其形状是由均值和标准差决定),那么平均距离在标准范围之外的点,
可以被定义为离群点并从数据中去除。
// 创建点云对象 指针
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
// 源点云读取 获取 后
// 创建滤波器,对每个点分析的临近点的个数设置为50 ,并将标准差的倍数设置为1 这意味着如果一
//个点的距离超出了平均距离一个标准差以上,则该点被标记为离群点,并将它移除,存储起来
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;//创建滤波器对象
sor.setInputCloud (cloud); //设置待滤波的点云
sor.setMeanK (50); //设置在进行统计时考虑查询点临近点数
sor.setStddevMulThresh (1.0); //设置判断是否为离群点的阀值
sor.filter (*cloud_filtered); //存储```