【论文笔记】V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges

协同感知Collaborative Perception定义

CP can be viewed as a mechanism designed to tackle the challenge of map merging, aligning perception data across multiple agents, and integrating it into a consistent reference frame.

III. V2X 通信

这部分主要关注一些Edge Computing-enabled V2X Communications的工作。

在现代 CP 系统中,解决从车辆传感器和设备收集的广泛感知数据的计算和存储需求是必不可少的。云计算和数据中心已成为流行的解决方案,利用 V2X 通信互连车辆设备和服务器进行数据共享。然而,这些解决方案可能会引入显着的通信开销,并为实时 CP 任务提供有限的计算灵活性。更有效的替代方法是边缘计算,它在网络边缘放置数据和计算服务,靠近车辆设备,促进CP操作的快速响应。

B. Blockchain-enabled V2X Communications

这部分主要讲的是用区块链技术提升CP的trustworthy

C. Digital Twin-enabled V2X Communications

基于数字孪生DT的多车协同平台,参考这篇《Multi-vehicle experiment platform: A Digital Twin Realization Method
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

IV. MODERN GENERIC FRAMEWORK OF COOPERATIVEPERCEPTION

A. 协同感知CP的framework

framework
这幅图清晰地描述了CP的全过程,我主要关注Preparation for Transmission部分,这也是我博士的核心研究内容。
个人认为,重点就在冗余去除部分:

Neighbouring vehicles might redundantly transmit information about the same objects, causing inefficient utilization of communication channels [168]. This excessive network load elevates the risk of important data packets experiencing delays or being lost, potentially compromising CP performance and safety.

B. Preparation for Transmission

核心在于减少Communication congestion,需要考虑3部分:

  • Cooperative agent selection: This category focuses on minimizing
    communication costs by transmitting perception information over a
    partially connected agent graph, thus reducing redundancy;

  • Perception information selection: This category addresses the
    maximization of informativeness, where cooperative agents select a
    subset of perceptive data crucial to the ego-vehicle, optimizing the
    data shared;

  • Agent & information selection: This category encompasses a joint
    consideration of both cooperative agent selection and perception
    information selection, aiming to balance communication efficiency and
    data importance.

以上三个研究点,可以概括为“谁来传输?”“传输什么?”。不过已经有很多相关文章了,起名When2ComWhere2comm等等。

1) Cooperative Agent Selection

选择正确的合作者至关重要,因为不适当的agent可能会导致中断和干扰,这可能会影响整体性能。近年来,考虑到感知改进和沟通质量,创建了通信策略来帮助选择有益的合作agent进行合作。

两个机制值得我注意

  1. score评分机制:《Collaborative 3D Object Detection for Automatic Vehicle Systems via Learnable Communications》该方案利用了一个通用的注意力机制,其中每个基础设施根据协作系统中的本地和接收信息计算匹配分数。随后,他们将这个分数与 CPMS 一起广播给协作车辆。在从连接的基础设施接收数据包后,自我车辆采用注意力机制来选择相邻的基础设施进行合作。虽然这种方法通过选择V2I通信中的一个代理来保存传输带宽,但它并没有最优地利用全局信息
  2. Multiagent Path Finding (MAPF) problem:通过对感知物体数量重合数来计算信息增益(Information gain)来选择通信scope,参考CMU文章《Selective Communication for Cooperative Perception in End-to-End
    Autonomous Driving》
  3. The significance of temporal dependencies in collaborator selection: 参考这篇文章《Select2Col: Leveraging Spatial-Temporal Importance of Semantic Information for Efficient Collaborative Perception》,也[开源了代码](https://github.com/huangqzj/select2col)。这篇文章的思路和我之前投稿的一篇Trans有些接近,但我不是用GNN实现的。想起来V2VNet也是基于GNN的设计。

本文利用图神经网络 (GNN) 来捕获自我车辆与其相邻代理之间的内在相关性。每个代理表示为一个节点,包含稀疏特征图和延迟信息。GNN 为每个代理相对于自我车辆分配权重值。权重为零或更低的代理被认为不适合协作。这种细化的权重有效地消除了导致噪声不合适的合作者,从而提高了感知性能。

(未完待续)

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值