算法工程师-机器学习面试题总结(2)

目录

1-14 如何处理高维组合特征?比如用户ID和内容ID?

1-15 什么是序号编码、one-hot编码、二进制编码?适合怎样的类别型数据?

1-16 如何做特征选择?卡方检验、信息值(IV)、VOE都是如何计算?各有什么优缺点?

1-17 计算特征之间的相关性方法有哪些?有什么优缺点

1-18 如何理解笛卡尔积、外积、内积?

1-19 文本数据有哪些预处理方法?

1-20 文本特征表示有哪些模型?他们的优缺点都是什么?

1-21 N-gram算法是什么?有什么优缺点?

1-22 讲解一下word2vec工作原理?损失函数是什么?

1-23 Skin-gram和cbow有何异同?

1-24 讲解一下LDA模型原理和训练过程?

1-25 图像数据如何处理?有哪些常用的图像特征提取方法?


1-14 如何处理高维组合特征?比如用户ID和内容ID?

处理高维组合特征,如用户ID和内容ID的组合,可以尝试以下方法:

1. 哈希技巧:使用哈希函数将高维组合特征映射到低维空间。通过哈希技巧,可以将高维组合特征转化为一个或多个低维特征,从而减少特征维度。这样可以降低模型的计算复杂度,并且在一定程度上保留了原始特征的信息。

2. 嵌入编码:使用嵌入编码(如Word2Vec、Embedding)将高维组合特征转换为低维连续向量。这种方法利用了嵌入模型的能力,将高维的离散特征转化为低维的连续特征表示。例如,可以使用经典的Word2Vec模型将用户ID和内容ID转换为固定长度的向量表示,然后将这些向量作为模型的输入。

3. 统计特征:基于高维组合特征,提取一系列统计特征来代表其相关信息。例如,可以使用用户ID和内容ID的组合来计算用户对该内容的平均评分、观看次数、购买次数等统计信息,然后将这些统计特征作为模型的输入。

4. 维度削减:使用降维技术(如主成分分析、线性判别分析等)将高维组合特征降低到较低的维度。这样可以减少模型的计算复杂度,并且在一定程度上保留了原始特征的信息。需要注意的是,在进行降维时,应该谨慎选择降维方法和降维后的维度,以避免信息损失过多。

1-15 什么是序号编码、one-hot编码、二进制编码?适合怎样的类别型数据?

序号编码(Ordinal Encoding)是一种将类别型数据转换为整数序列的编码方式。每个类别被赋予一个唯一的整数值,这些整数值是按照类别的自然顺序进行分配的。序号编码通常适用于具有内在有序性的类别型特征,例如衣服尺寸(小、中、大)、教育程度(小学、初中、高中、大学)等。

One-Hot编码是一种将类别型数据编码为二进制向量的方法。每个类别被表示为一个长度为类别总数的向量,其中只有一个位置为1,其他位置为0。这种编码方式适用于没有内在顺序的类别型特征,如颜色(红、绿、蓝)、国家(中国、美国、英国)等。

二进制编码(Binary Encoding)是一种将类别型数据转换为二进制表示的编码方式。首先给类别分配一个唯一的整数值,然后将整数值转换为二进制数,再将二进制数按位切分为多个特征列。二进制编码可以有效地减少编码后特征的维度,适用于类别数量较多的特征。

适合选择哪种编码方式,取决于数据的特性和模型的需求。如果类别型特征有明显的顺序关系,可以使用序号编码;如果类别之间没有顺序关系,且类别数较少,可以选择One-Hot编码;如果类别数较多,可以考虑使用二进制编码来降低维度。在应用编码之前,需要先对数据进行适当的探索和分析,以了解特征的类型和属性。另外,需要注意的是,编码后的特征可能增加了模型的复杂度,可能需要进一步的特征选择和调优。

1-16 如何做特征选择?卡方检验、信息值(IV)、VOE都是如何计算?各有什么优缺点?

特征选择是指从原始特征集合中选择出最有用的特征子集,以提高机器学习模型的性能和泛化能力。以下是常用的特征选择方法和它们的计算方式以及各自的优缺点:

1. 卡方检验(Chi-Square Test):

卡方检验用于判断两个变量之间是否存在关联性,以此来选择相关性较高的特征。

计算方式:

- 对于每个特征与目标变量之间的关联性,首先构建一个分组交叉表,计算实际观察频数和预期频数,然后使用卡方统计量来衡量实际观察频数与预期频数之间的偏差。最后,通过计算卡方值和对应的p-value来确定特征的相关性。

优点:

- 简单、直观,易于理解和实现。

- 可以判断特征与目标变量之间是正相关还是负相关。

缺点:

- 忽略了变量之间的线性关系。

- 只能用于评估分类变量之间的关联性。

2. 信息值(Information Value,IV):

信息值是一种评估分类变量的预测能力的方法,在特征选择中广泛使用。

计算方式:

- 首先将特征的不同取值进行分组,然后计算每个分组中的事件发生概率和非事件发生概率。接着,通过计算事件发生概率和非事件发生概率的对数差值,然后乘以权重(通常是事件发生概率和非事件发生概率之差),最后将所有分组的对数差值与权重相乘的结果求和,得到特征的IV值。

优点:

- 可以评估分类变量的预测能力。

- 能够处理缺失值。

缺点:

- 对于连续变量的处理相对复杂。

- 只能用于评估分类变量的相关性。

3. Voice of Employee(VOE):

VOE是一种主观评价和关键性因素选择的特征选择方法,常用于人力资源领域。

计算方式:

- VOE的计算方式主要基于员工对不同特征的评分和重要性调查,通过将评分与重要性权重相乘并加总来计算特征的VOE值。

优点:

- 能够考虑到人类主观评价的因素。

- 可以捕捉到对目标变量有重要影响的特征。

缺点:

- 结果可能受到不同参与者主观评价的影响。

- 需要大量的调查和主观判断,开销较大。

选择适合的特征选择方法取决于数据集特点、问题要解决的领域以及可用资源。综合考虑特征选择方法的优缺点,可以根据具体需求选择合适的方法进行特征选择。此外,还可以通过组合多个特征选择方法来获得更好的结果。

1-17 计算特征之间的相关性方法有哪些?有什么优缺点

计算特征之间的相关性是衡量它们之间线性关系强度的方法。以下是一些常用的计算特征相关性的方法以及它们的优点和缺点:

1. 皮尔逊相关系数(Pearson Correlation Coefficient):

- 皮尔逊相关系数是衡量两个连续变量之间线性关系强度和方向的常用方法。其取值范围为 -1 到 +1,表示负相关和正相关的程度。

- 优点:计算简单,易于实现。

- 缺点:只能测量线性关系,并且对异常值敏感。

2. 斯皮尔曼相关系数(Spearman Correlation Coefficient):

- 斯皮尔曼相关系数是衡量两个变量之间任意关系的非参数方法,适用于连续变量和顺序变量。

- 优点:不要求变量线性相关且对异常值不敏感。

- 缺点:无法捕捉到非单调的关系。

3. 切比雪夫距离(Chebyshev Distance):

- 切比雪夫距离是衡量两个连续变量之间差异的方法,其定义为两个变量之间最大差值的绝对值。

- 优点:简单易懂,适用于连续变量。

- 缺点:无法表达变量之间的线性关系。

4. 互信息(Mutual Information):

- 互信息是衡量两个变量之间非线性关系强度的方法,可以用于连续变量和分类变量。

- 优点:可以捕捉到非线性关系,适用于连续变量和分类变量。

- 缺点:对特征取值的分布敏感。

5. 方差膨胀因子(Variance Inflation Factor,VIF):

- 方差膨胀因子用于衡量多元线性回归模型中特征间的共线性程度。

- 优点:可以检测共线性问题,找出需要剔除的冗余变量。

- 缺点:只适用于线性回归模型。

选择适当的相关性方法取决于数据类型、研究问题和特征之间的关系。在进行特征选择或特征工程时,常常需要多种方法的结合分析,以获得更全面准确的结论。重要的是要了解每种方法的优缺点,并根据具体情况进行选择和解释结果。

1-18 如何理解笛卡尔积、外积、内积?

笛卡尔积(Cartesian Product)是集合论中的概念,指的是将两个集合的元素进行组合生成的一个新的集合。设A和B是两个集合,它们的笛卡尔积表示为A × B,其中A × B = {(a, b) | a ∈ A, b ∈ B}。简单来说,就是将A中的每个元素与B中的每个元素进行组合,生成一个新的集合。

外积(Outer Product)在向量和矩阵运算中出现,用于计算两个向量之间的乘积或矩阵之间的乘积。对于两个向量a和b的外积,结果是一个矩阵,其中每个元素都是a与b对应位置上的元素相乘得到的。外积通常用符号"a ⊗ b"表示。

内积(Inner Product),也称为点积或数量积,是向量运算中常见的一种运算。对于两个向量a和b,内积是将它们对应位置上的元素相乘,然后将乘积相加得到一个标量。内积在几何上可以用来度量两个向量的夹角和长度关系,也在许多机器学习和统计算法中起到重要作用。内积通常用符号"a · b"表示。

总结起来:

- 笛卡尔积是将两个集合的元素进行组合生成一个新的集合。

- 外积是向量或矩阵之间的乘积,结果是一个矩阵,其中每个元素都是对应位置上的元素相乘得到的。

- 内积是向量之间的乘积,结果是一个标量,是对应位置上的元素相乘再相加得到的。

1-19 文本数据有哪些预处理方法?

文本数据的预处理方法有很多,以下是一些常见的预处理方法:

1. 清除特殊字符:删除文本中的非字母、数字和常见符号等特殊字符。

2. 分词:将文本拆分成单词或词语的序列,以便后续处理。

3. 去除停用词:去除一些常见但无实际意义的词语,如“a”,“and”,“the”等。

4. 大小写转换:将文本统一转换成大写或小写,以消除大小写的差异。

5. 词干提取和词形归并:将单词转换成其原始形式,如将"running"转换成"run"。

6. 去除标点符号:删除文本中的标点符号。

7. 去除数字:删除文本中的数字。

8. 正则化:使用正则表达式来删除或替换特定的模式,如URL、邮箱地址等。

9. 去除重复词语:删除文本中重复出现的词语。

10. 去除低频词语:删除在整个文本集中出现频率很低的词语,以减少噪音。

这些预处理方法可以根据具体任务和数据集的不同进行组合和调整。预处理的目的是提高文本数据的质量和可用性,以便后续的文本分析和建模。

1-20 文本特征表示有哪些模型?他们的优缺点都是什么?

常用的文本特征表示模型包括以下几种:

1. 词袋模型 (Bag of Words, BoW):将文本转换为固定长度的向量表示,向量的每个维度代表一个词语在文本中的出现次数或者权重。优点是简单、易理解,缺点是忽略了词语顺序和语义信息。

2. TF-IDF:词频-逆文档频率 (Term Frequency-Inverse Document Frequency) 是一种用于评估一个词语在文档中的重要性的统计方法。TF-IDF对于常见词语的权重下降,对罕见词语的权重上升。优点是考虑了词语在文本集中的重要性,缺点是仍然忽略了词语顺序和语义信息。

3. Word2Vec:Word2Vec是基于神经网络的词嵌入模型,通过学习词语的分布式表示,将每个词语映射为一个实数向量。优点是捕捉了词语之间的语义关系,缺点是对于罕见词语的效果较差。

4. GloVe:GloVe是一种用于生成词向量的模型,结合了全局词语统计信息和局部上下文窗口信息。相比于Word2Vec,GloVe的优点是更好地处理了罕见词语。

5. FastText:FastText是一种基于Word2Vec的词嵌入模型,通过将词语划分为子词来捕捉更多的语义信息。优点是对于罕见词语和词语中的未知部分有更好的表示能力。

这些模型各有优缺点,选择合适的模型取决于具体任务和数据集。通常,深度学习模型如Word2Vec、GloVe和FastText在语义处理方面表现较好,而词袋模型和TF-IDF在简单的文本分类任务上更常用。

1-21 N-gram算法是什么?有什么优缺点?

N-gram算法是一种用于文本分析和自然语言处理的统计方法。它是基于N个连续的词语或字符组合来建模文本的方法。

在N-gram算法中,N表示连续出现的词语或字符的数量,常见的有unigram(单个词语)、bigram(两个连续词语)和trigram(三个连续词语)。通过计算文本中不同N-gram的频率或概率,可以得到一个N-gram模型。

优点:

1. 简单和易于实现:N-gram算法不需要依赖复杂的模型,可以快速得到结果。

2. 考虑了词语的局部上下文信息:N-gram可以捕捉到词语之间的相互关系,有助于理解和预测文本。

缺点:

1. 维度爆炸:随着N的增加,N-gram模型的特征空间会呈指数级增长,对计算资源和存储空间要求较高。

2. 忽略了长距离依赖:N-gram算法是基于局部上下文的,不能捕捉到长距离的依赖关系。

3. 数据稀疏性:对于罕见的N-gram序列,可能会导致模型无法很好地学习到其概率分布。

为了解决一些缺点,可以采用平滑技术(如加法平滑、Katz平滑等)和截断技术(如截断频率和截断互信息)来调整N-gram模型的参数,以降低维度和改善模型性能。同时,N-gram算法通常结合其他特征表示方法和算法使用,以获得更好的效果。

1-22 讲解一下word2vec工作原理?损失函数是什么?

Word2Vec是一种用于生成词向量的模型,主要包括两种架构:Skip-gram和CBOW(Continuous Bag of Words)。这里我将重点介绍Skip-gram模型。

Skip-gram的基本思想是通过一个中心词来预测其周围的上下文词语。具体来说,给定一个长度为T的文本序列,Skip-gram模型的目标是最大化给定中心词来预测周围上下文词语的条件概率。

模型的输入是一个one-hot编码表示的中心词向量,即在输入向量中只有一个维度对应的值为1,其余维度为0。随后,输入向量经过一个隐藏层(嵌入层),将维度为V(词汇表大小)的输入向量映射为维度为D的隐藏层向量。

接着,隐藏层向量与输出权重矩阵相乘,得到维度为V的输出向量,然后通过softmax函数归一化,将输出向量转换为条件概率分布,用于预测上下文词语在词汇表中的概率分布。

训练时,模型通过最大化目标函数的对数似然来学习参数。优化目标函数采用了负对数似然(negative log likelihood)的形式,损失函数即为负对数似然函数的平均值。

具体而言,损失函数的计算分两步进行。首先,对于给定的中心词,从词汇表中随机采样一组负样本(即不是对应中心词的上下文词语),目标是使负样本在输出分布中的概率接近于零。其次,计算中心词和正样本的损失,使其在输出分布中的概率尽可能地接近于1。

整个训练过程通常使用梯度下降算法来最小化损失函数。最终得到的隐藏层向量就是词向量,可以用于表示词语在语义空间中的分布。

总的来说,Word2Vec通过训练一个神经网络来学习词语的分布式表示,通过预测上下文词语来优化模型,从而获得高质量的词向量。

1-23 Skin-gram和cbow有何异同?

Skip-gram和CBOW是Word2Vec模型的两种不同架构,它们在处理文本时有一些异同之处。

1. 目标和预测方式:

- Skip-gram模型的目标是预测给定中心词周围的上下文词语。它通过输入一个中心词,输出周围上下文词语的条件概率。Skip-gram模型适用于具有大量训练数据的情况下,它能更好地捕捉到稀疏的上下文信息。

- CBOW模型的目标是根据周围上下文词语来预测中心词。它通过输入周围上下文词语的one-hot向量的平均值,来输出中心词的条件概率。CBOW模型适用于数据较为稠密的情况下,因为它能更好地捕捉上下文的平均语义。

2. 神经网络结构:

- Skip-gram模型通过一个嵌入层将输入向量映射为隐藏层向量,然后通过输出层将隐藏层向量映射为预测的上下文词语。

- CBOW模型也通过一个嵌入层将多个输入向量映射为隐藏层向量,然后通过输出层将隐藏层向量映射为预测的中心词。

3. 训练时间和效果:

- Skip-gram模型相对于CBOW模型来说,更加耗时,因为它需要对每个中心词预测周围的多个上下文词语。

- 在数据相对较少的情况下,CBOW模型往往能更好地捕捉到整体的语义信息;而在数据较多的情况下,Skip-gram模型通常能更好地捕捉到罕见词语的语义信息。

1-24 讲解一下LDA模型原理和训练过程?

LDA(Latent Dirichlet Allocation)是一种用于主题建模的概率生成模型。它的目标是从给定的文本集中,推断出主题分布和词语分布,以揭示文本背后的主题结构。

LDA的基本思想是将每篇文本看作是一种主题和词语的混合,每个主题由一组概率分布表示,每个词语属于某个主题的概率由主题的词语分布决定。具体来说,LDA模型的生成过程如下:

1. 为每个主题随机初始化主题的词语分布。

2. 对于每篇文本,随机选择一个主题分布。

3. 对于文本中的每个词语:

a. 根据之前选择的主题分布,随机选择一个主题。

b. 根据所选主题的词语分布,随机选择一个词语。

4. 重复步骤3直到所有词语都被分配主题。

通过LDA模型的训练过程,我们可以推断出每个文本中的主题分布和每个主题的词语分布。

在训练过程中,可以使用Gibbs采样或变分推断来估计参数。Gibbs采样是一种基于马尔科夫链蒙特卡洛方法的迭代算法,通过对每个词语在每个迭代步骤中重新分配主题来估计参数。变分推断是一种优化问题,通过近似推断来优化LDA模型的参数。

训练过程的目标是最大化观察到的文本集中的似然函数或边缘似然函数。通常使用对数似然函数来表示损失函数,并使用迭代算法(如EM算法)来最小化损失函数。

1-25 图像数据如何处理?有哪些常用的图像特征提取方法?

处理图像数据通常包括以下步骤:预处理、特征提取和特征表示。其中,特征提取是将图像转化为可用于机器学习算法的数值向量表示的关键步骤。以下是常用的图像特征提取方法:

1. 颜色直方图(Color Histogram):

- 统计图像中每个颜色通道的像素分布情况,并以向量形式表示。

- 特点:简单直观,能够捕捉图像的整体颜色分布。

2. 纹理特征(Texture Features):

- 使用统计方法(如灰度共生矩阵、小波变换等)来描述图像中的纹理信息。

- 特点:能够捕捉到图像的细节和纹理结构。

3. 边缘特征(Edge Features):

- 使用边缘检测算法(如Canny边缘检测)来检测图像中的边界。

- 特点:能够捕捉到图像中的边界和轮廓。

4. 角点特征(Corner Features):

- 使用角点检测算法(如Harris角点检测)来检测图像中的关键点。

- 特点:能够捕捉到图像中的角点和兴趣点。

5. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT):

- 使用SIFT算法检测图像中的关键点,并提取与尺度无关的特征描述子。

- 特点:对旋转、缩放和平移具有鲁棒性。

6. 主成分分析(Principal Component Analysis,PCA):

- 使用PCA算法对图像进行降维,提取最重要的特征。

- 特点:能够捕捉到图像中的主要变化方向。

7. 卷积神经网络(Convolutional Neural Networks,CNN):

- 基于深度学习的方法,使用卷积神经网络自动提取图像特征。

- 特点:能够学习到图像的高级抽象特征。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值