【Blender】Blender 通过 Python 实现模型大小压缩


引言

随着三维可视化项目的复杂化,模型体积快速膨胀常常导致加载慢、渲染卡顿、传输困难等问题。特别是在 WebGL、移动端、在线医学三维重建等场景中,对模型体积的控制成为核心优化点。本文将系统讲解如何借助 Blender 提供的 Python API,自动化实现模型的“瘦身”,从贴图压缩、点数简化到最终格式压缩,形成一套高效的模型优化流程。


一、模型压缩目标与思路

模型优化的核心目标是:在尽量不影响视觉质量的前提下,显著降低模型体积。通常包括以下几个关键方向:

优化方向目标工具/方式
纹理压缩减少贴图分辨率与大小Pillow、Blender 内部压缩
点数优化简化网格面片数量Blender 中的 Decimate Modifier
格式压缩使用 glTF 的 Draco 编码gltf-pipeline、Blender glTF 导出插件

二、贴图压缩逻辑

纹理贴图往往是模型体积的“大头”,一个 4K 分辨率的纹理可以高达数十 MB。我们可以:

  1. 遍历所有材质的贴图
  2. 读取贴图路径并压缩为新文件(比如缩放到 25% 分辨率);
  3. 将材质替换为压缩后贴图
  4. 重载贴图进 Blender 场景中
import bpy
import os
from PIL import Image

# 压缩参数
resize_ratio = 0.5  # 贴图缩放比例(0.5 = 缩小为 50%)
jpeg_quality = 10   # JPEG 质量(1~100,10 表示极强压缩)

# 替换材质中使用的贴图
def replace_image_in_materials(original_image_name: str, new_image: bpy.types.Image):
    for mat in bpy.data.materials:
        if not mat.use_nodes or not mat.node_tree:
            continue
        for node in mat.node_tree.nodes:
            if node.type == 'TEX_IMAGE' and node.image and node.image.name == original_image_name:
                node.image = new_image
                print(f"✅ 替换材质 {mat.name} 中的贴图 {original_image_name}{new_image.name}")

# 压缩贴图函数
def compress_image(image: bpy.types.Image):
    if not image.filepath_raw:
        print(f"⚠️ 跳过无效贴图(未保存或内嵌): {image.name}")
        return None

    src_path = bpy.path.abspath(image.filepath_raw)
    if not os.path.exists(src_path):
        print(f"⚠️ 贴图文件不存在: {src_path}")
        return None

    try:
        img = Image.open(src_path)
        new_size = (int(img.width * resize_ratio), int(img.height * resize_ratio))
        img = img.resize(new_size, Image.LANCZOS)

        # 生成压缩图路径
        dir_name, base_name = os.path.split(src_path)
        name_wo_ext = os.path.splitext(base_name)[0]
        new_path = os.path.join(dir_name, f"{name_wo_ext}_compressed.jpg")
        img.save(new_path, 'JPEG', quality=jpeg_quality)

        # 重新导入新图作为 Image 对象
        new_image = bpy.data.images.load(new_path)
        replace_image_in_materials(image.name, new_image)
        print(f"🎯 压缩并替换贴图: {image.name}{new_image.name}")
        return new_image
    except Exception as e:
        print(f"❌ 压缩失败 {image.name}: {e}")
        return None

# 遍历所有贴图并压缩替换
for image in bpy.data.images:
    compress_image(image)

print("✅ 所有贴图压缩并替换完成!你现在可以手动导出 GLB。")

三、模型网格简化逻辑

模型面数直接影响文件大小和渲染效率。针对多边形数量过高的模型,可以通过 Blender 的 Decimate Modifier 实现简化:

  1. 遍历所有 Mesh 对象;
  2. 为每个对象添加 Decimate Modifier
  3. 设置 ratio(如 0.3 表示保留 30% 面数);
  4. 应用修改器将变更写入网格;
  5. 可选地,记录面数压缩前后的统计信息。

⚠️ 注意避免过度压缩导致“破面”或重要细节丢失,可通过可视化检查逐批处理。

参考代码结合第四章节↓

四、导出压缩格式

贴图和点数优化后,还可以进一步通过格式本身进行压缩:

  • 使用 Blender 自带的 glTF 导出器;
  • 启用 Draco 压缩选项(Mesh Compression);
  • 可选择导出为 .glb(二进制)格式,便于 Web 加载与传输。

也可使用命令行工具 gltf-pipeline 执行更强的压缩控制,例如:

gltf-pipeline -i input.glb -o output.glb --draco.compressMeshes

结合第三章节的优化点数,均衡配置压缩方案:

import bpy
import os

export_dir = "G:\\new\\models"
if not os.path.exists(export_dir):
    os.makedirs(export_dir)

# 获取所有 MESH 对象(你也可以按 Collection 限定)
objects_to_export = [obj for obj in bpy.context.scene.objects if obj.type == 'MESH']

for obj in objects_to_export:
    # 取消选择,激活目标对象
    bpy.ops.object.select_all(action='DESELECT')
    obj.select_set(True)
    bpy.context.view_layer.objects.active = obj

    # 可选:添加 Decimate 修饰器进行简化
    decimate = obj.modifiers.new(name="DecimateMod", type='DECIMATE')
    decimate.ratio = 0.5  # 调整简化强度(0.5 表示保留一半面数)
    bpy.ops.object.modifier_apply(modifier=decimate.name)

    # 导出为压缩后的 GLB 文件
    export_path = os.path.join(export_dir, f"{obj.name}.glb")
    bpy.ops.export_scene.gltf(
        filepath=export_path,
        use_selection=True,
        export_format='GLB',
        export_apply=True,
        export_draco_mesh_compression_enable=True,
        export_draco_mesh_compression_level=6,  # 0~10 越大压缩越强
    )

print("批量压缩导出完成!")

五、流程建议与自动化集成

整个优化流程可以整理为以下步骤,可以根据需要酌情选取、组合方案,
通过 Python 脚本一次性处理整批模型文件:

  1. 加载模型;
  2. 遍历贴图并压缩;
  3. 网格简化处理;
  4. 更新材质;
  5. 导出为 glb(启用 Draco);
  6. 清理场景,准备下一个模型。

✅ 可结合文件夹批处理逻辑,实现模型文件夹一键压缩优化,非常适合用于模型发布前的自动化构建流程。


六、优化前后效果示例(参考)

优化阶段文件大小
原始 GLB472 MB
压缩贴图后40 MB
简化网格后12 MB
使用 Draco 后8 MB

如需源码脚本或定制化压缩流程,欢迎留言交流!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵境引路人

感谢投喂 ~ ❤

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值