摘要:
本文重点研究噪声范围图像中的快速平面检测。 首先,提出了对最先进的区域增长算法的两项改进,以使其更快,而不会损失非结构化环境的精度。 一是增加基于局部形状信息的种子选择程序,避免盲目生长。 另一种是简化平面拟合均方误差的计算复杂度。 其次,针对结构化环境提出了一种称为基于网格的区域生长的新算法。 当点云被视为距离图像时,根据邻域信息将点云划分为小块。 小块称为网格。 然后根据网格的局部外观将网格分为不同的类别,包括稀疏的、平面的、球形的和线性的。 最后,平面网格通过区域增长聚集成大块。 每当添加新网格时,都会增量计算平面参数。 生成的平面可用于 3D 平面同时定位和映射 (SLAM)。 实验结果表明结构化和非结构化环境的平面检测速度都有希望。
来源:
International Conference on Mechatronics and Automation、Aug 2011