【目标检测】|数据增强 Copy-Paste

Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation

谷歌、UC伯克利与康奈尔大学的研究人员使用简单粗暴的“复制-粘贴”术,再次刷新COCO数据集上目标检测与实例分割的新高度。

随机粘贴

该文主要使用了训练集中实例分割对象复制粘贴实现训练阶段的数据增广,
随机选择两幅训练图像

随机尺度抖动缩放

随机水平翻转

随机选择一幅图像中的目标子集

粘贴在另一幅图像中随机的位置

可能有些同学看到过其他论文在使用复制粘贴术增强数据的时候对位置和尺度进行建模,使其符合这个世界的常识(这样好像更合理),但谷歌学者在论文中一再说明:不需要!乱放其实挺好!

另外,也许我们会想,目标边缘是不是要处理一下?毕竟直接放进去看起来不自然。但谷歌学者发现这个其实也没必要处理,反正他们信了一些论文处理了也没发现有提升。

总结起来就是:数据增强的结果看起来不自然,没关系!又不是给人看。

大尺度抖动

特别值得一提的是,作者除了重点强调复制粘贴要简单粗暴外,还在论文实验中发现,对于尺度抖动也不要太温柔。

大尺度抖动(Large Scale Jittering,LSJ)是相较于标准尺度抖动(standard scale jittering,SSJ)而言更为大胆的一种尺度抖动方法。在SSJ中,尺度变化的范围是0.8~ 1.25,而在LSJ中,尺度变化范围是0.1~2.0;如此大范围的抖动,会产生对比强烈的抖动效果。此外,无论LSJ还是SSJ,都使用了随机水平翻转。LSJ的最终效果如下图:

在这里插入图片描述

实验

在这里插入图片描述
在这里插入图片描述
ref
https://www.cnblogs.com/shuimuqingyang/p/14147785.html
https://zhuanlan.zhihu.com/p/338085877
https://blog.csdn.net/oYeZhou/article/details/111307717
http://nicethemes.cn/news/txtlist_i13966v.html

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值