了解模型预测控制3--MPC设计参数

本文详细介绍了MPC设计中的关键参数,包括采样时间的选择、预测范围对动态响应的影响、控制范围的确定,以及软硬约束的应用。通过权重管理多个目标间的平衡,确保控制器性能与计算效率兼顾。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        本节,我们将讨论MPC设计参数(采样时间、预测范围、控制范围、约束和权重)。

        为这些参数选择合适的值非常重要,因为它们不仅会影响控制器性能,还影响到MPC算法的计算复杂性问题,即每个时间步的在线优化问题求解。在这里,我们将为您提供有关如何选择控制器采样时间,预测和控制范围,约束和权重的推荐。

        (1)通过选择采样时间,我们确定控制器执行控制算法的速率。如果它太大,当出现干扰时,控制器将无法足够快地对干扰作出反应。相反,如果采样时间太小,控制器可以更快地对干扰和设定点变化作出反应,但这会导致过多的计算负荷。要在性能和计算量之间找到适当的平衡点,建议在开环系统响应的上升时间内设置10到20个采样。

 

        正如我们之前所讨论的,在每个时间步,MPC控制器对未来的对象输出做出预测,并且优化器找到最佳控制输入序列,将预测的对象输出驱动到尽可能接近设定点。

 

        (2)预测的未来时间步数称为预测范围,它显示控制器预测到未来的距离。如果它太短,会发生什么? 想想以下示例。在以每小时50英里的速度行驶时,您知道踩下制动踏板刹车时,将需要5秒钟的时间车才会停下来。如果您的预测范围是2秒,那么当您看到红绿灯时,采用制动为时已晚。通过红绿灯后,汽车才能停下来。因此,我们应该选择一个涵盖系统重要动态的预测范围。

 

        那么为什么我们不选择很长的预测范围呢? 假设您已经预测了未来很长一段的速度,以便按时到达目的地。意外的事情可能发生:例如从卡车后面掉下来的箱子,过马路的行人, 或道路情况的改变,这些都可能影响你的速度,你可能需要扔掉你规划的重要部分,浪费你的计算。

 

        假设根据我们之前讨论的内容选择采样时间,选择预测范围的建议是20到30个采样时间以覆盖开环系统的瞬态响应。

 

        (3)另一个设计参数是控制范围。如果这是一系列未来的控制动作,可以由这些动作得到预测对象输出,控制移动到时间步m的数量称为控制范围,(这时)其余输入保持不变。控制范围内的每个控件移动都可以被认为是需要由优化器计算的自由变量。因此,控制范围越小,计算越少。为什么我们不总是选择变量为1的控制范围呢? 我们可以,但它可能不会给我们最好的机动。

 

        通过增加控制范围,我们可以获得更好的预测,但代价是增加复杂性。我们甚至可以选择使控制范围与预测范围相同。

 

        但是,请注意,通常只有前几个控制移动对预测的输出行为有显着影响,而其余的控制移动只有轻微的影响。因此,选择一个非常大的控制范围只会增加计算复杂性。

         选择控制范围的一个好的经验法则是将其设置为预测范围的10%到20%,并且至少有2-3步。

 

        (4)MPC可以对输入,输入变化率和输出进行约束,这些可以是软约束或硬约束。硬约束不能违背,软约束可以被违反。

 

        假设MPC控制器通过调节油门来控制该车的速度。由于油门踏板可以移动的物理限制,我们希望有一个硬约束使油门踏板位置保持在此范围内。我们可能还希望强制速度保持某些值之间。但是,对输入和输出都有硬限制并不是一个好主意,因为这些限制可能会相互冲突,导致优化问题的解决方案不可行。

 

        下面这是一个展示这种情况的场景。假设汽车在高速公路上以50英里/小时的速度行驶,速度限制如图所示。当汽车开始爬坡时,它的速度会降低。控制器将施加更多油门以提高速度。但由于汽车顶部的重负荷, 即使控制器施加全油门,速度也会持续下降。所以,如果速度限制是硬约束,优化器将无法找到满足输入和输出约束的可行解决方案。但是,如果速度限制是软的,控制器将允许违反它,直到汽车爬过山坡并且不会发生冲突。请注意,为了使软约束的违背较小,优化问题会使其最小化。建议将输出约束设置为软约束,并避免对输入和输入变化速率都有硬约束。

 

        (5)我们有多个人生目标,比如可能睡觉,吃饭,和朋友闲逛,以及赚钱。你如何管理完成所有这些目标的时间?您可以指定权重。例如,如果睡觉对你来说比吃东西更重要,那么你就会把睡觉的权重设置的比吃东西大。

 

        同样,MPC有多个目标。我们希望输出尽可能接近地跟踪它们的设定点,但同时我们希望有平滑的控制移动以避免讨大的控制机动。在这些互相竞争的目标之间达到平衡的性能,所用的方法是在输入率和输出间设置加权。我们不仅要权衡这两个群体,还要同时调整组内的相对权重。

 

        例如,如果在这个2x2系统中,执行第一个参考跟踪相比第二个输出更为重要的话,我们为第一个输出分配更大的权重,它们输出之间的比率大于1。

 

        本节,我们已经解释了设计MPC控制器时需要选择的参数。在下一篇文章中,我们将讨论在处理非线性时可以使用的方法。这些非线性可以在被控对象处,可以在约束处,还可以在目标函数处。

视频地址如下:

【Model Predictive Control】了解模型预测控制,第三部分:模型预测控制设计参数 - MATLAB&Simulink_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此时@此刻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值