目标检测YOLO实战应用案例100讲-基于多尺度表征学习和元增量学习的遥感影像目标检测(续)

目录

  基于元学习和深度匹配的遥感图像目标检测

4.1相关工作

4.1.1元学习的介绍

4.1.2基于元学习的自然图像目标检测

4.1.3基于元学习的遥感图像目标检测

4.2基于元学习和深度匹配的遥感图像目标检测

4.2.1多尺度特征提取网络

4.2.2特征校准网络

4.2.3深度匹配网络

4.3实验结果及分析

4.3.1实验数据的准备

4.3.2实验环境与设置

4.3.3对比实验

4.3.4消融实验与可视化分析

基于元增量学习的双分支遥感图像目标检测

5.1相关工作

5.1.1增量学习的介绍

5.1.2基于元学习的增量目标检测

5.2基于元增量学习的双分支遥感图像目标检测

5.2.1类别向量修正网络

5.2.2双分支结构

5.3实验结果及分析

5.3.1实验数据的准备

5.3.2实验环境与设置

5.3.3对比实验

5.3.4消融实验与可视化分析

知识拓展

航空遥感图像(Aerial Images)目标检测数据集

基于yolov6的遥感影像目标识别

YOLO V6解决的问题

网络设计

BackBone

Neck

Head

DIOR数据集

数据集处理

YOLO V6训练DIOR

修改dataset.yaml


本文篇幅较长,分为上下两篇,上篇详见基于多尺度表征学习和元增量学习的遥感影像目标检测

  基于元学习和深度匹配的遥感图像目标检测


近年来,得益于数据集规模的增加和计算资源的日益增长,深度学习方法得到了 快速地发展,在图像分类、语义分割、目标检测等任务上都取得了显著的成功。然而, 在某些特定的领域,数据不仅获取难度大,而且标注成本高,因此只有少量注释的数 据。为了解决小样本下的深度学习,元学习应运而生。
在小样本目标检测领域,若直接采用传统的目标检测方法来学习小样本数据,容 易出现模型过拟合的问题。而基于元学习的目标检测方法可以很好的解决这一问题, 因此近年来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值