点云数据集大全(附官网地址和下载链接)

本文列举了多个重要的点云数据集,包括斯坦福大学3D扫描库(经典Bunny、Dragon等)、S3DIS(室内分割)、ShapeNet(带标注的3D模型)、ModelNet(分类)、PCL库数据、KITTI(车载)、悉尼城市目标和PandaSet,以及nuscenes(大规模自动驾驶数据)。数据集涵盖多种应用场景和任务,如分割、分类、建模等,并提供了下载链接和转换工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

———————————————————————————————————————

1. 斯坦福大学 3D扫描库

The Stanford 3D Scanning Repository(经典兔子、龙等)

最经典的数据集,Bunny、Happy Buddha、Dragon等模型

bunny
“斯坦福模型”,用 Cyberware 3030 MS 扫描仪,Lucy除外,她用斯坦福大型雕像扫描仪(Stanford Large Statue Scanner)进行了扫描.
第二组模型是在 XY 扫描分辨率为 100 时采集的 微米使用 XYZ RGB 自动同步相机。该相机的精度(3 Sigma)± 0.025mm (±0.001“),X 轴、Y 轴和 Z 轴分辨率为 0.1mm (0.004”), 分别为 0.002 毫米(0.00008 英寸)和 0.003 毫米(0.0001 英寸)

官网地址:https://graphics.stanford.edu/data/3Dscanrep/
百度网盘:https://pan.baidu.com/s/1cw-4M68eoB0flFN4lkbzhQ?pwd=3yz6
提取码:3yz6

S3DIS (分割)

在这里插入图片描述
数据集提供了来自 2D、2.5D 和 3D 域的各种相互配准的模态,以及实例级语义和几何注释。数据集是在 6 个大型室内区域收集的,这些区域源自 3 个主要用于教育和办公用途的不同建筑包含超过 70,000 张 RGB 图像,以及相应的深度、表面法线、语义注释、全局 XYZ 图像(均以常规和 360° 等距柱状投影图像的形式)以及相机信息。它还包括已注册的原始和语义注释的 3D 网格和点云。此外,该数据集还包含原始 RGB 和深度图像以及每个扫描位置的相应相机信息。这些数据之前已在斯坦福大学大规模 3D 室内空间数据集 (S3DIS)中呈现

室内分割数据集,模型为每个房间共计271个,房间内有13类物体

官网地址:http://buildingparser.stanford.edu/dataset.html#Download

2. ShapeNet (分割)

在这里插入图片描述
没有颜色但有法向量且带有标注信息的飞机、杯子、帽子等16个类别的模型。

ShapeNet 由几个组成:

  1. ShapeNetCore :完整 ShapeNet 子集,具有单个干净的 3D 模型以及手动验证的类别和对齐注释。它涵盖了 55
    个常见对象类别,拥有约 51,300 个独特的 3D 模型。
  2. ShapeNetSem: 一个更小、更密集的子集,由 12,000 个模型组成,分布在更广泛的 270个类别中。除了手动验证的类别标签和一致的对齐方式外,这些模型还使用真实世界的尺寸、类别级别的材料成分估计值以及总体积和总重量的估计值进行注释。

官网地址:https://www.shapenet.org/
(需要注册并审核通过)

3. ModelNet10 / ModelNet40 (分类)

在这里插入图片描述
普林斯顿 ModelNet 项目的目标是为计算机视觉、计算机图形学、机器人学和认知科学领域的研究人员提供全面、干净的对象 3D CAD 模型集合。
包含数据集:ModelNet40、ModelNet10、modelnet40_ply_hdf5_2048、modelnet40_normal_resampled :
飞机、汽车、椅子、碗、瓶、键盘、楼梯、…

官网地址:http://modelnet.cs.princeton.edu(部分可直接下载)

4. PCL库官方数据集

在这里插入图片描述

包括二维、三维点云,配准、分割、滤波、建模等数据。
下载地址:https://github.com/PointCloudLibrary/data?tab=readme-ov-file

5. KITTI (车载)

在这里插入图片描述
这个数据集来自德国卡尔斯鲁厄理工学院的一个项目,其中包含了利用KIT的无人车平台采集的大量城市环境的点云数据集(KITTI),这个数据集不仅有雷达、图像、GPS、INS的数据,而且有经过人工标记的分割跟踪结果,可以用来客观的评价大范围三维建模和精细分类的效果和性能。

官网地址:https://www.cvlibs.net/datasets/kitti/
百度网盘:https://pan.baidu.com/s/1Pr4dmBFUegugVauTrN_bsA?pwd=pv32
提取码:pv32

6. 悉尼城市目标数据集

在这里插入图片描述


该数据集包含了使用Velodye HDL-64ELIDAR扫描的各种常见城市道路物体,收集于澳大利亚悉尼中央商务区。有631个单独的扫描对象,跨越类别的车辆,行人,标志和树木它被收集,以测试匹配和分类算法。它的目的是提供非理想的传感条件,是实际的城市传感系统的代表,具有很大的可变性的观点和闭塞。

官网地址:https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml

7. PandaSet (车载)

在这里插入图片描述

PandaSet 是第一个可用于学术和商业用途的开源 AV 数据集,将禾赛一流的 LiDAR 传感器与 Scale AI 的高质量数据注释相结合。PandaSet 使用具有类似图像分辨率的前向 MEMS LiDAR (PandarGT) 和机械旋转 LiDAR (Pandar64) 收集数据。收集的数据采用长方体和分割标注(比例 3D 传感器融合分割)的组合进行标注。

官网地址:https://pandaset.org/
不知道为什么官网的数据集下载链接失效了
百度链接:https://pan.baidu.com/s/1FCei91Eb0yKfkcKa52Bovw?pwd=7iwp
提取码:7iwp

8. nuscenes (车载)

在这里插入图片描述
nuScenes数据集是由Motional团队开发的用于自动驾驶的公共大规模数据集。
在波士顿和新加坡收集了 1000 个驾驶场景。 完整数据集包括大约 1.4M 相机图像、390k 激光雷达扫描、1.4M 雷达扫描和 1.4M 对象边界框,这些框位于 40k 关键帧中。
nuScenes是第一个提供来自自动驾驶汽车整个传感器套件(6个摄像头,1个激光雷达,5个雷达,GPS,IMU)数据的大规模数据集。与 KITTI 相比,nuScenes 包含的对象注释增加了 7 倍。

完整数据集很大,可以下载mini版本
官网地址:https://www.nuscenes.org/nuscenes


以上数据集的存储格式很多都不一样,可以用下面代码相互转化

点云数据各种格式相互转化(bin,pcd,ply,csv等)

批量转换点云格式:bin转txt【转换nuscenes数据集不乱码】
批量转换点云格式:csv转pcd
批量转换点云格式:pkl转csv
批量转换点云格式:ply转pcd
批量转换点云格式:txt转pcd
批量转换pcd数据的编码形式:ASCII转Binary
批量转换pcd数据的编码形式:Binary转ASCII

### 关于OpenGF点云数据下载与使用方法 #### 数据概述 OpenGF是一个超大规模地面过滤数据,构建在全球范围内的开放ALS点云之上。该数据强调“来自开源,回归开源”的理念,旨在促进地理空间数据分析机器学习应用的发展[^1]。 #### 下载指南 为了获取并利用此资源,访问论文预印本页面提供的链接可以找到详细的文档说明以及如何下载这些公开可用的数据文件。具体来说,前往[arXiv上的项目主页](https://arxiv.org/abs/2101.09641),这里不仅包含了完整的描述技术细节,还提供了指向实际数据存储位置的信息。 #### 使用准备 一旦获得了所需的点云数据,在处理之前可能还需要安装一些必要的库支持工具。对于基于Python的工作流程而言,确保环境中已正确配置CUDAPyTorch是非常重要的,因为这会影响到后续操作的速度效率。例如,如果是在Windows 10操作系统下工作,则应考虑如下设置: ```bash pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu10.1/torch1.6.0/index.html ``` 这段命令会依据特定版本的CUDA (cu10.1) PyTorch (torch1.6.0) 来安装mmcv-full包,这对于许多计算机视觉任务都是必需的支持组件之一[^2]。 另外,考虑到可能会涉及到自定义数据的情况,建议预先熟悉所使用的框架及其扩展机制。比如当采用MMDetection进行实例分割模型训练时,除了基本依赖外,还需额外引入`pycocotools`用于支持COCO格式标注解析: ```bash pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI" ``` 以上步骤有助于建立一个稳定可靠的基础平台,从而更顺利地加载预处理像OpenGF这样的大型点云数据[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值