PyTorch中diag_embed和transpose函数使用详解

torch.diag_embed 是 PyTorch 中用于将一个向量(或批量向量)**嵌入为对角矩阵(或批量对角矩阵)**的函数。它常用于图神经网络(GNN)或线性代数中生成对角矩阵。


函数原型

torch.diag_embed(input, offset=0, dim1=-2, dim2=-1)
参数解释:
  • input:形状为 (..., n) 的张量,表示一个或多个长度为 n 的向量;
  • offset:对角偏移量(默认是 0,即主对角线);
  • dim1, dim2:在哪两个维度上插入对角矩阵(通常保持默认即可)。

示例

示例 1:单个向量生成对角矩阵
x = torch.tensor([1, 2, 3])
out = torch.diag_embed(x)
# 输出:
# tensor([[1, 0, 0],
#         [0, 2, 0],
#         [0, 0, 3]])
示例 2:批量嵌入
x = torch.tensor([[1, 2, 3], [4, 5, 6]])  # shape: (2, 3)
out = torch.diag_embed(x)
# 输出 shape: (2, 3, 3)
# 第一个矩阵是 [1,2,3] 的对角形式,第二个是 [4,5,6] 的对角形式

应用场景(

degree_signal = torch.sum(corr_graph, dim=-1)           # shape: (1, N)
D = torch.diag_embed(degree_signal)                     # shape: (1, N, N)
corr_laplacian = (D - corr_graph).squeeze(0)            # shape: (N, N)

这个操作是为了构造图拉普拉斯矩阵(Laplacian):

L = D − A L = D - A L=DA

其中:

  • A A A 是图的邻接矩阵(corr_graph);
  • D D D 是度矩阵(对角矩阵,diag_embed(degree_signal))。

在 PyTorch 中,transpose() 是用于交换张量中两个指定维度的函数,常用于调整张量维度顺序,特别是在矩阵运算或图神经网络等场景中。


函数格式:

torch.transpose(input, dim0, dim1)
# 或者张量对象方法形式:
input.transpose(dim0, dim1)

参数说明:

  • input:输入的张量(Tensor)。
  • dim0:要交换的第一个维度索引。
  • dim1:要交换的第二个维度索引。

示例 1:二维张量(矩阵)

x = torch.tensor([[1, 2], [3, 4]])  # shape: (2, 2)
print(x.shape)  # torch.Size([2, 2])

y = x.transpose(0, 1)  # 转置矩阵
print(y)
# tensor([[1, 3],
#         [2, 4]])

示例 2:三维张量

x = torch.randn(2, 3, 4)  # shape: (batch=2, height=3, width=4)

# 交换第1维(height)和第2维(width)
y = x.transpose(1, 2)  # shape: (2, 4, 3)
print(y.shape)

注意事项:

  • transpose()交换两个维度,如果要重新排列多个维度,请使用 permute()
  • transpose() 返回的是一个视图(view),不复制数据。

.T 的区别:

  • tensor.T 只适用于 二维张量,是 transpose(0, 1) 的简写。
  • 多维张量请使用 transpose(dim0, dim1)permute()

示例:配合 .permute()

x = torch.randn(2, 3, 4)
# 等价于 transpose(1, 2)
x.transpose(1, 2) == x.permute(0, 2, 1)  # True

<think>好的,用户想了解旋转目标检测算法中的损失函数设计与实现。首先,我需要回顾一下旋转目标检测的基本概念,然后结合提供的引用内容,整理相关的损失函数方法。 根据引用[1],旋转目标检测使用旋转矩形,涉及五个参数(x, y, w, h, θ),这增加了模型的复杂度。因此,损失函数需要处理这些额外的参数,尤其是角度θ的优化问题。传统的IoU对于旋转框可能不够准确,所以需要改进。 引用[2]提到了多种基于IoU的损失函数改进方法,比如KFIoU、IoU-SmoothL1、Polar IoU、PIoU以及高斯方法如GWDKLD。我需要逐一分析这些方法的设计思路实现方式。 首先是KFIoU,它可能基于卡尔曼滤波或者某种几何变换来计算旋转IoU,但引用中的描述有限,可能需要进一步查阅资料。不过用户提供的引用指出KFIoU Loss在ICLR 2022的投稿中,所以可能利用凸包或几何近似来计算交并比,从而更准确地优化参数。 然后是SCRDet中的IoU-SmoothL1,结合了两种损失函数,避免直接计算复杂的SkewIoU,可能通过分解位置角度参数,分别用不同的损失处理,比如Smooth L1用于坐标,而角度使用其他方式如正弦函数的损失。 PolarMask的Polar IoU可能将旋转框转换到极坐标系,简化计算,这样交并区域更容易计算,从而优化损失。PIoU则是基于像素级重叠,累积像素贡献,可能更适合小目标或密集场景。 高斯方法如GWDKLD用高斯分布来建模边界框,将旋转框的参数转化为分布参数,然后通过分布之间的距离(如Wasserstein距离或KL散度)作为损失。这种方法可能更稳定,避免角度周期性的问题。 在实现时,需要注意不同框架下的计算效率,比如矩阵运算是否支持旋转矩形的计算,或者是否需要自定义CUDA内核。此外,角度参数可能存在周期性问题,比如0度180度等价,如何处理这种问题,可能需要使用正弦余弦函数来转换角度,避免不连续。 用户可能需要具体的代码示例,但引用中没有提供,需要根据常见实现方式给出一个示例,比如使用高斯Wasserstein距离的损失函数,将旋转框参数转换为高斯分布,然后计算距离。 最后,要总结不同方法的优缺点,帮助用户根据应用场景选择合适的损失函数。比如,如果注重精度,可能选择PIoU;如果注重计算效率,可能选择高斯方法。</think>### 旋转目标检测算法中的损失函数设计与实现 #### 1. 旋转目标检测的挑战 旋转目标检测需要预测目标的旋转矩形参数($x, y, w, h, θ$),其中角度$θ$的周期性(如$0°$$180°$等价)边界框交并比(IoU)的复杂计算是主要难点[^1]。传统水平框的IoU无法直接应用于旋转场景,需设计适应旋转几何特性的损失函数。 --- #### 2. 主要损失函数设计方法 ##### **2.1 基于几何IoU的改进** - **KFIoU Loss** 通过卡尔曼滤波(Kalman Filter)的几何近似计算旋转框的交集面积,利用凸包算法优化交并比计算[^2]。公式为: $$L_{KFIoU} = 1 - \frac{\text{Intersection}_{KF}}{\text{Union}_{KF}}$$ 优势:避免直接求解复杂多边形交集,提升计算效率。 - **PIoU(Pixel-wise IoU)** 基于像素级重叠的损失函数,通过累加重叠像素的贡献值直接计算交并比: $$L_{PIoU} = 1 - \frac{\sum_{(i,j) \in \text{Overlap}} w_{ij}}{\text{Area}_A + \text{Area}_B - \sum w_{ij}}$$ 其中$w_{ij}$为像素权重,适用于密集目标小目标检测。 ##### **2.2 基于角度解耦的损失函数** - **IoU-Smooth L1 Loss(SCRDet)** 将位置损失与角度损失解耦,位置参数用Smooth L1 Loss,角度参数用正弦函数约束周期性: $$L_{\theta} = \sin^2(\theta_{pred} - \theta_{gt})$$ 总损失为: $$L_{\text{total}} = \lambda_1 L_{\text{IoU}} + \lambda_2 L_{\text{SmoothL1}} + \lambda_3 L_{\theta}$$ 优势:缓解角度回归的不连续性。 ##### **2.3 基于高斯分布的损失函数** - **GWD(Gaussian Wasserstein Distance)** 将旋转框建模为二维高斯分布,通过Wasserstein距离衡量分布差异: $$L_{GWD} = \ln\left(1 + \frac{D_{W}^2}{\sigma}\right)$$ 其中$D_W^2 = ||\mu_1 - \mu_2||^2 + \text{Tr}(\Sigma_1 + \Sigma_2 - 2(\Sigma_1^{1/2}\Sigma_2\Sigma_1^{1/2})^{1/2}))$[^2]。 优势:对角度长宽比敏感,避免边界突变。 - **KLD(Kullback-Leibler Divergence)** 基于KL散度衡量高斯分布相似性: $$L_{KLD} = \frac{1}{2} \left( \text{Tr}(\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_0)^T \Sigma_1^{-1}(\mu_1 - \mu_0) - 2 + \ln\frac{|\Sigma_1|}{|\Sigma_0|} \right)$$ 优势:适用于任意角度分布,稳定性强。 --- #### 3. 实现示例(基于PyTorch) 以GWD损失为例: ```python import torch def gaussian_wd_loss(pred, target): # 将旋转框参数转换为高斯分布参数 (μ, Σ) pred_mu = pred[:, :2] pred_sigma = rotation_params_to_covariance(pred[:, 2:5]) target_mu = target[:, :2] target_sigma = rotation_params_to_covariance(target[:, 2:5]) # 计算Wasserstein距离 mu_distance = torch.norm(pred_mu - target_mu, dim=1)**2 trace_term = torch.diagonal(pred_sigma + target_sigma - 2 * torch.sqrt(pred_sigma @ target_sigma), dim1=1, dim2=2).sum(dim=1) wd_sq = mu_distance + trace_term return torch.log(1 + wd_sq / 0.5).mean() def rotation_params_to_covariance(params): # 将(w, h, θ)转换为协方差矩阵Σ w, h, theta = params.unbind(dim=1) cos_theta = torch.cos(theta) sin_theta = torch.sin(theta) R = torch.stack([cos_theta, -sin_theta, sin_theta, cos_theta], dim=1).view(-1, 2, 2) S = torch.diag_embed(torch.stack([w**2 / 12, h**2 / 12], dim=1)) return R @ S @ R.transpose(1, 2) ``` --- #### 4. 方法对比与选择建议 | 方法 | 优点 | 缺点 | 适用场景 | |------------|---------------------------|---------------------------|------------------------| | KFIoU | 计算高效,适合实时检测 | 对极端角度误差敏感 | 航拍图像、遥感目标 | | PIoU | 像素级精度,小目标友好 | 计算复杂度高 | 密集文本、医学图像 | | GWD/KLD | 角度鲁棒性强,收敛稳定 | 需高斯建模,实现复杂 | 任意旋转目标检测 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值