一、旋转矩阵,旋转向量,单位四元数的相互转换总结


前言

研究旋转矩阵,旋转向量,单位四元数,都是为了表达机器人的姿态。欧拉角在SLAM的应用中不多,就不涉及了。


一、要点

1. 旋转矩阵

  • 旋转矩阵是行列式为1的正交矩阵,由单位正交基组成。
    正交矩阵的行列式为正负1
  • 旋转矩阵是两个坐标系的过渡矩阵,其左乘坐标系1中的某向量的坐标,可以得到将此向量过渡到坐标系2后的坐标表示。
  • n维空间的旋转矩阵构成特殊正交群。
  • 优点:是计算非常方便,矩阵乘法非常简单。
  • 缺点:1.表达方式冗余,旋转只有3个自由度,却要用9个量表示。2.带有正交,行列式为1的约束,不利于优化。

2. 旋转向量

  • 旋转向量又称为轴角,其方向与旋转轴 n \mathbf n n一致,而长度等于旋转角 θ \mathit \theta θ。向量 θ n \mathit \theta \mathbf n θn即可表示旋转。
  • 不严谨的说,这玩意就是李代数。
  • 优点:表达紧凑;没有约束易于优化。
  • 缺点:不能直接用来计算旋转一个向量,需要转换为旋转矩阵或四元数才能做这个计算;具有奇异性,模长大于 2 π 2 \pi 2π时具有周期性。
    所谓奇异性,我理解的就是做不到一一对应,在这里是一个姿态可以对应多个旋转向量

3. 单位四元数

  • 四元数的运算基本与复数的运算是类似的,唯一的区别是四元数的乘法不可交换(由于乘法公式的最后项有个叉乘)。
  • 用四元数表示旋转的三个要点:
    • 实部唯一表示了旋转角;
    • 虚部所指方向即旋转轴的方向,(注意:虚部在 R 3 \mathbb R^3 R3里不需要是一个单位向量);
    • 实部和虚部一起要服从是单位四元数的约束,即模为1。
  • 单位四元数的逆等于其共轭。
  • 优点:没有奇异性,将要旋转的向量变成纯虚数后可以直接用四元数乘法计算。
  • 缺点:不够直观。

二、旋转向量—>旋转矩阵(罗德里格斯公式)

在这里插入图片描述

在上图中,向量 v \mathbf v v沿着旋转轴 n \mathbf n n旋转 θ \mathit \theta θ角,变为 v ′ \mathbf v' v。现在我们要将 v ′ \mathbf v' v分解成向量 v \mathbf v v,旋转轴 n \mathbf n n,旋转角 θ \mathit \theta θ组成的量
v ′ = v k + v p ′ = v k + a + b = ( v ⋅ n ) n + ∣ v i ∣ sin ⁡ θ j + v i cos ⁡ θ = ( v ⋅ n ) n + ∣ ( n × v ) × n ∣ sin ⁡ θ n × v ∣ n × v ∣ + ( ( n × v ) × n ) cos ⁡ θ = ( v ⋅ n ) n + ∣ n ∣ ∣ v ∣ sin ⁡ α ∣ n ∣ sin ⁡ π 2 sin ⁡ θ n × v ∣ n ∣ ∣ v ∣ sin ⁡ α + ( ( n × v ) × n ) cos ⁡ θ = ( v ⋅ n ) n + ( n × v ) sin ⁡ θ + ( v − ( v ⋅ n ) n ) cos ⁡ θ = ( 1 − cos ⁡ θ ) ( v ⋅ n ) n + n ∧ v sin ⁡ θ + v cos ⁡ θ = ( 1 − cos ⁡ θ ) n n T v + sin ⁡ θ n ∧ v + cos ⁡ θ v = [ cos ⁡ θ I + ( 1 − cos ⁡ θ ) n n T + sin ⁡ θ n ∧ ] v \begin{split} \mathbf v' & = \mathbf v_k + \mathbf v'_p \\ & = \mathbf v_k + \mathbf a + \mathbf b \\ & = (\mathbf v \cdot \mathbf n) \mathbf n + | \mathbf v_i|\sin\theta \mathbf j + \mathbf v_i \cos \theta \\ & = (\mathbf v \cdot \mathbf n) \mathbf n + |(\mathbf n \times \mathbf v) \times \mathbf n | \sin \theta \frac {\mathbf n \times \mathbf v}{|\mathbf n \times \mathbf v|} + ((\mathbf n \times \mathbf v) \times \mathbf n)\cos \theta \\ & = (\mathbf v \cdot \mathbf n) \mathbf n + |\mathbf n| |\mathbf v|\sin \alpha |\mathbf n| \sin \frac{\pi}{2} \sin\theta \frac{\mathbf n \times \mathbf v}{|\mathbf n| |\mathbf v| \sin \alpha} + ((\mathbf n \times \mathbf v) \times \mathbf n)\cos \theta \\ & = (\mathbf v \cdot \mathbf n) \mathbf n + (\mathbf n \times \mathbf v) \sin \theta + (\mathbf v - (\mathbf v \cdot \mathbf n ) \mathbf n) \cos \theta \\ & = (1 - \cos \theta) (\mathbf v \cdot \mathbf n) \mathbf n + \mathbf n^{\land} \mathbf v \sin \theta + \mathbf v \cos \theta \\ & = (1 - \cos \theta) \mathbf n \mathbf n^{\mathrm T} \mathbf v + \sin \theta \mathbf n^{\land} \mathbf v + \cos \theta \mathbf v \\ & = [\cos \theta \mathbf I + (1 - \cos \theta) \mathbf n \mathbf n^{\mathrm T} + \sin \theta \mathbf n^{\land}] \mathbf v \end{split} v=vk+vp=vk+a+b=(vn)n+visinθj+vicosθ=(vn)n+(n×v)×nsinθn×vn×v+((n×v)×n)cosθ=(vn)n+n∣∣vsinαnsin2πsinθn∣∣vsinαn×v+((n×v)×n)cosθ=(vn)n+(n×v)sinθ+(v(vn)n)cosθ=(1cosθ)(vn)n+nvsinθ+vcosθ=(1cosθ)nnTv+sinθnv+cosθv=[cosθI+(1cosθ)nnT+sinθn]v
要注意点乘得到的是标量;叉乘得到的是向量,且要用右手定则分析其方向。

( v ⋅ n ) n = n n T v (\mathbf v \cdot \mathbf n) \mathbf n = \mathbf n \mathbf n^{\mathrm T} \mathbf v (vn)n=nnTv可以从微观层面去证明,很简单。
上面的计算有很多细节值得思考,比如第三行的 ∣ v i ∣ sin ⁡ θ j | \mathbf v_i|\sin\theta \mathbf j visinθj为什么要乘单位向量 j \mathbf j j v i cos ⁡ θ \mathbf v_i \cos \theta vicosθ为什么又不乘?

上式中中括号里的内容是一个矩阵,就是旋转矩阵 R \mathbf R R
R = cos ⁡ θ I + ( 1 − cos ⁡ θ ) n n T + sin ⁡ θ n ∧ \begin{equation} \mathbf R = \cos \theta \mathbf I + (1 - \cos \theta) \mathbf n \mathbf n^{\mathrm T} + \sin \theta \mathbf n^{\land} \end{equation} R=cosθI+(1cosθ)nnT+sinθn


三、旋转矩阵—>旋转向量

将(1)式两边取迹:
t r ( R ) = 3 cos ⁡ θ + ( 1 − cos ⁡ θ ) n T n + sin ⁡ θ ⋅ 0 = 3 cos ⁡ θ + 1 − cos ⁡ θ = 2 cos ⁡ θ + 1 \begin{align} \mathrm tr(\mathbf R) & = 3 \cos \theta + (1 - \cos \theta) \mathbf n^{\mathrm T} \mathbf n + \sin \theta \cdot 0 \notag \\ & = 3 \cos \theta + 1 - \cos \theta \notag \\ & = 2 \cos \theta + 1 \end{align} tr(R)=3cosθ+(1cosθ)nTn+sinθ0=3cosθ+1cosθ=2cosθ+1
从旋转矩阵中得到旋转角:
θ = arccos ⁡ t r ( R ) − 1 2 \theta = \arccos \frac {\mathrm tr(\mathbf R) - 1} {2} θ=arccos2tr(R)1
至于转轴 n \mathbf n n,把它看作普通的向量,用它对应的旋转矩阵 R \mathbf R R去左乘旋转它,它不会发生任何变化,于是有下式:
R n = n \mathbf R \mathbf n =\mathbf n Rn=n
因此,转轴 n \mathbf n n是矩阵 R \mathbf R R的特征值1对应的特征向量,用求特征向量的方法去求即可,再归一化可以得到转轴 n \mathbf n n:
R n = n s.t. n T n = 1 \mathbf R \mathbf n = \mathbf n \qquad \textit{s.t.} \qquad \mathbf n^{\mathrm T} \mathbf n = 1 Rn=ns.t.nTn=1


四、单位四元数—>旋转矩阵

用四元数 q \mathbf q q对纯虚四元数数表示的空间点 p = [ 0 , v p T ] T \mathbf p= [0,\mathbf v_p^{\mathrm T}]^{\mathrm T} p=[0,vpT]T进行旋转有:
p ′ = q p q − 1 = q + p + q − 1 = q + ( q − 1 ) ⊕ p = [ s − v T v s I + v ∧ ] [ s v T − v s I + v ∧ ] [ 0 v p ] = [ s 2 + v T v s v T − s v T − v T v ∧ s v − s v − v ∧ v v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ] [ 0 v p ] = [ 1 ( v ∧ v ) T 0 v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ] [ 0 v p ] = [ 1 0 T 0 v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ] [ 0 v p ] = [ 0 ( v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ) v p ] \begin{split} \mathbf p^{'} & = \mathbf q \mathbf p \mathbf q^{-1} \\ & = \mathbf q^{+} \mathbf p^{+} \mathbf q^{-1} \\ & = \mathbf q^{+} (\mathbf q^{-1})^{\oplus} \mathbf p \\ & = \begin{bmatrix} s & -\mathbf v^{\mathrm T} \\ \mathbf v & s \mathbf I + \mathbf v^{\land} \end{bmatrix} \begin{bmatrix} s & \mathbf v^{\mathrm T} \\ -\mathbf v & s \mathbf I + \mathbf v^{\land} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf v_{p} \end{bmatrix} \\ & = \begin{bmatrix} s^2 + \mathbf v^{\mathrm T} \mathbf v & s\mathbf v^{\mathrm T} -s\mathbf v^{\mathrm T} - \mathbf v^{\mathrm T} \mathbf v^{\land} \\ s\mathbf v - s\mathbf v - \mathbf v^{\land} \mathbf v& \mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2 \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf v_{p} \end{bmatrix} \\ & = \begin{bmatrix} 1 & (\mathbf v^{\land} \mathbf v)^{\mathrm T} \\ \mathbf 0 & \mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2 \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf v_{p} \end{bmatrix} \\ & = \begin{bmatrix} 1 & \mathbf 0^{\mathrm T} \\ \mathbf 0 & \mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2 \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf v_{p} \end{bmatrix} \\ & = \begin{bmatrix} 0 \\ (\mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2) \mathbf v_{p}\end{bmatrix} \end{split} p=qpq1=q+p+q1=q+(q1)p=[svvTsI+v][svvTsI+v][0vp]=[s2+vTvsvsvvvsvTsvTvTvvvT+s2I+2sv+(v)2][0vp]=[10(vv)TvvT+s2I+2sv+(v)2][0vp]=[100TvvT+s2I+2sv+(v)2][0vp]=[0(vvT+s2I+2sv+(v)2)vp]
上面可以看出被单位四元数旋转后的坐标点(纯虚四元数)依然是一个纯虚四元数
由此可得单位四元数到旋转矩阵的变换:
R = v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 \begin{equation} \mathbf R = \mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2 \end{equation} R=vvT+s2I+2sv+(v)2


五、旋转矩阵—>单位四元数

将(3)式两边取迹:
t r ( R ) = v T v + 3 s 2 + 0 + t r ( ( v ∧ ) 2 ) \mathrm tr(\mathbf R) = \mathbf v^{\mathrm T} \mathbf v + 3s^2 + 0 + \mathrm tr((\mathbf v^{\land})^2) tr(R)=vTv+3s2+0+tr((v)2)

其中: ( v ∧ ) 2 = [ 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ] [ 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ] = [ − v 2 2 − v 3 2 ⋯ ⋯ ⋯ − v 1 2 − v 3 2 ⋯ ⋯ ⋯ − v 1 2 − v 2 2 ] \begin{split} (\mathbf v^{\land})^2 & = \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix} \\ & = \begin{bmatrix} -v_2^2 - v_3^2 & \cdots & \cdots \\ \cdots & -v_1^2-v_3^2 & \cdots \\ \cdots & \cdots & -v_1^2-v_2^2 \end{bmatrix} \end{split} (v)2= 0v3v2v30v1v2v10 0v3v2v30v1v2v10 = v22v32v12v32v12v22

t r ( R ) = v 1 2 + v 2 2 + v 3 2 + 3 s 2 − 2 ( v 1 2 + v 2 2 + v 3 2 ) = 3 s 2 − ( v 1 2 + v 2 2 + v 3 2 ) = 3 s 2 − ( 1 − s 2 ) = 4 s 2 − 1 \begin{align} \mathrm tr(\mathbf R) & = v_1^2 + v_2^2 + v_3^2 + 3s^2 - 2(v_1^2 + v_2^2 + v_3^2) \notag \\ & = 3s^2 - (v_1^2 + v_2^2 + v_3^2) \notag \\ & = 3s^2 - (1 - s^2) \notag \\ & = 4s^2 - 1 \end{align} tr(R)=v12+v22+v32+3s22(v12+v22+v32)=3s2(v12+v22+v32)=3s2(1s2)=4s21
稍作变换(4)式可以从旋转矩阵 R \mathbf R R中求得单位四元数的实部:
s = t r ( R ) + 1 4 s = \sqrt {\frac {\mathrm tr(\mathbf R) +1}{4}} s=4tr(R)+1

下面开始求虚部,将虚部当作待旋转的坐标点带入(3)式有:
R v = ( v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ) v = v v T v + s 2 v + 0 + 0 = ( 1 − s 2 ) v + s 2 v = v \begin{split} \mathbf R \mathbf v & = (\mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2) \mathbf v \\ & = \mathbf v \mathbf v^{\mathrm T} \mathbf v + s^2 \mathbf v + 0 + 0 \\ & = (1 - s^2) \mathbf v + s^2 \mathbf v \\ & = \mathbf v \end{split} Rv=(vvT+s2I+2sv+(v)2)v=vvTv+s2v+0+0=(1s2)v+s2v=v

由此可见虚部也是矩阵 R \mathbf R R的特征值1对应的特征向量,即与旋转向量 θ n \theta \mathbf n θn R 3 \mathbb R^3 R3中指向同一个方向,但是他们之间的模不一样,旋转向量的模是量转角 θ \theta θ,这里虚部的模由 s 2 + v T v = 1 s^2 + \mathbf v^{\mathrm T} \mathbf v = 1 s2+vTv=1确定。故由旋转矩阵求虚部为
R v = v s.t. s 2 + v T v = 1 \mathbf R \mathbf v = \mathbf v \qquad \textit{s.t.} \qquad s^2 + \mathbf v^{\mathrm T} \mathbf v = 1 Rv=vs.t.s2+vTv=1


六、单位四元数<—>旋转向量

由式(2)与式(4)可得:
t r ( R ) = 2 cos ⁡ θ + 1 = 4 s 2 − 1 \mathrm tr(\mathbf R) = 2 \cos \theta +1 = 4s^2 -1 tr(R)=2cosθ+1=4s21

cos ⁡ θ = 2 s 2 − 1 \cos \theta = 2s^2 -1 cosθ=2s21
又有三角函数关系
cos ⁡ θ = 2 cos ⁡ 2 θ 2 − 1 \cos \theta = 2\cos ^2 \frac{\theta}{2} -1 cosθ=2cos22θ1
于是有实部与转角的相互转换:
s = cos ⁡ θ 2 或 θ = 2 arccos ⁡ s s = \cos \frac{\theta}{2} \quad \text{或} \quad\theta = 2 \arccos s s=cos2θθ=2arccoss
刚刚已经分析,单位四元数的虚部 v \mathbf v v与旋转向量的转轴 n \mathbf n n R 3 \mathbb R^3 R3中指向同一个方向,区别是他们的模服从不同的约束。单位四元数转换为转轴 n \mathbf n n
n = v ∣ v ∣ = v 1 − s 2 = v 1 − cos ⁡ 2 θ 2 = v sin ⁡ θ 2 \mathbf n = \frac {\mathbf v}{|\mathbf v|} = \frac {\mathbf v}{\sqrt{1 - s^2}} = \frac {\mathbf v}{\sqrt{1 - \cos^2 \frac {\theta}{2}}} = \frac {\mathbf v}{\sin \frac {\theta}{2}} n=vv=1s2 v=1cos22θ v=sin2θv
旋转向量转换为虚部 v \mathbf v v
v = sin ⁡ θ 2 n = 1 − s 2 n \mathbf v = \sin \frac {\theta}{2} \mathbf n = \sqrt{1 - s^2} \mathbf n v=sin2θn=1s2 n


总结

旋转矩阵 R \mathbf R R旋转向量 θ n \theta \mathbf n θn单位四元数 q = [ s , v ] \mathbf q = [s, \mathbf v] q=[s,v]
旋转矩阵 R \mathbf R R R = cos ⁡ θ I + ( 1 − cos ⁡ θ ) n n T + sin ⁡ θ n ∧ \mathbf R = \cos \theta \mathbf I + (1 - \cos \theta) \mathbf n \mathbf n^{\mathrm T} + \sin \theta \mathbf n^{\land} R=cosθI+(1cosθ)nnT+sinθn R = v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 \mathbf R = \mathbf v \mathbf v^{\mathrm T} + s^2 \mathbf I + 2s \mathbf v^{\land} + (\mathbf v^{\land})^2 R=vvT+s2I+2sv+(v)2
旋转向量 θ n \theta \mathbf n θn θ = arccos ⁡ t r ( R ) − 1 2 R n = n s.t. n T n = 1 \theta = \arccos \frac {\mathrm tr(\mathbf R) - 1} {2} \\ \mathbf R \mathbf n = \mathbf n \quad \textit{s.t.} \quad \mathbf n^{\mathrm T} \mathbf n = 1 θ=arccos2tr(R)1Rn=ns.t.nTn=1 θ = 2 arccos ⁡ s n = v ∣ v ∣ = v 1 − s 2 = v sin ⁡ θ 2 \quad\theta = 2 \arccos s \\ \mathbf n = \frac {\mathbf v}{\lvert \mathbf v \rvert} = \frac {\mathbf v}{\sqrt{1 - s^2}} = \frac {\mathbf v}{\sin \frac {\theta}{2}} θ=2arccossn=vv=1s2 v=sin2θv
单位四元数 q = [ s , v ] \mathbf q = [s, \mathbf v] q=[s,v] s = t r ( R ) + 1 4 R v = v s.t. s 2 + v T v = 1 s = \sqrt {\frac {\mathrm tr(\mathbf R) +1}{4}} \\ \mathbf R \mathbf v = \mathbf v \quad \textit{s.t.} \quad s^2 + \mathbf v^{\mathrm T} \mathbf v = 1 s=4tr(R)+1 Rv=vs.t.s2+vTv=1 s = cos ⁡ θ 2 v = sin ⁡ θ 2 n = 1 − s 2 n s = \cos \frac{\theta}{2} \\ \mathbf v = \sin \frac {\theta}{2} \mathbf n = \sqrt{1 - s^2} \mathbf n s=cos2θv=sin2θn=1s2 n
  • 7
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 四元数法是一种使用四元数表示旋转的方法。四元数是一种复数,可以用来描述旋转变换。四元数的形式为 q = w + xi + yj + zk,其中 w、x、y 和 z 是实数,i、j 和 k 是虚数单位四元数旋转矩阵之间的关系可以通过四元数旋转公式来表示: R = 1 - 2(y^2 + z^2) 2(xy - zw) 2(xz + yw) 2(xy + zw) 1 - 2(x^2 + z^2) 2(yz - xw) 2(xz - yw) 2(yz + xw) 1 - 2(x^2 + y^2) 其中 R 是旋转矩阵,w、x、y 和 z 是四元数的四个分量。 使用四元数法求解旋转矩阵的步骤如下: 1. 输入四元数 q。 2. 使用四元数旋转公式计算旋转矩阵 R。 3. 输出旋转矩阵 R。 例如,假设我们有一个四元数 q = 1 + 2i + 3j + 4k,要使用四元数法求解旋转矩阵。根据四元数旋转公式,我们可以得到旋转矩阵 R: R = 1 - 2(3^2 + 4^2) 2(2*3 - 4*1) 2(2*4 + 3*1) 2(2*3 + 4*1) 1 - 2(2^2 + 4^2) 2(3*4 - 2*1) 2(2*4 - 3*1) 2(3*4 + 2*1) 1 - 2(2^2 + 3^2) = 1 - 24 4 8 6 1 - 16 12 8 12 1 - 9 = -23 4 8 6 -15 12 8 ### 回答2: 四元数法是一种用于求解旋转矩阵的方法。四元数是一种特殊的数学对象,它由实部和三个虚部组成,可以表示旋转在三维空间中的方向和角度。 在四元数法中,一个旋转矩阵可以通过一个单位四元数来表示。单位四元数具有单位长度,可以将其视为在四维空间中的一个点。 首先,通过给定的旋转角度和旋转轴,可以计算出单位四元数的实部和虚部。这里的旋转轴可以是三维空间中的任意向量旋转角度则决定了旋转的大小。 然后,将单位四元数表示为实部和虚部的形式,可以构造出旋转矩阵旋转矩阵是一个3x3的矩阵,它描述了一个向量旋转之后的变化。通过单位四元数,可以将向量从一个坐标系旋转到另一个坐标系。 具体来说,给定一个向量v,在四元数法中,将其表示为虚部为0的四元数。然后,通过将该四元数与表示旋转单位四元数相乘,可以得到旋转后的四元数。最后,通过旋转后的四元数可以计算出旋转矩阵。 使用四元数法求解旋转矩阵的好处是旋转没有万向节锁问题,即可以实现任意旋转,而不仅仅是绕某一固定轴。此外,四元数法还具有计算效率高和精度高的优势。 总之,四元数法是一种用于求解旋转矩阵的有效方法。通过给定旋转角度和旋转轴,可以计算出单位四元数,然后通过单位四元数构造出旋转矩阵。它在计算机图形学、机器人学和虚拟现实等领域有广泛的应用。 ### 回答3: 四元数法是一种用于求解旋转矩阵的方法,它可以更高效地进行旋转运算,特别适用于三维空间中的旋转问题。 在四元数法中,旋转矩阵可以用四元数表示。四元数是一种复数的扩展,由实部和虚部组成。旋转矩阵通过四元数的虚部来描述旋转轴和旋转角度。 具体而言,我们可以使用一个单位四元数来表示旋转矩阵单位四元数具有模长为1,即其实部的平方加上虚部的平方为1。通过控制虚部的值,可以实现不同的旋转轴和旋转角度。 通过四元数法求解旋转矩阵的步骤如下: 1. 定义旋转轴和旋转角度:确定旋转轴的方向和旋转角度的大小。 2. 转化为虚部:根据旋转轴的方向和旋转角度的大小,计算得到对应的虚部。 3. 构建四元数:将得到的实部和虚部组合起来构成四元数。 4. 归一化:将四元数除以其模长,使其成为单位四元数。 5. 计算旋转矩阵:根据四元数的实部和虚部计算得到旋转矩阵。 通过四元数法求解旋转矩阵的优点是能够更高效地进行旋转运算,减少了矩阵乘法和求逆的计算量,从而提高了计算的速度和效率。 总而言之,四元数法是一种用于求解旋转矩阵的方法,通过控制虚部的值来描述旋转轴和旋转角度。它在计算效率方面具有优势,在三维空间中的旋转问题中得到了广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值