【SLAM十四讲】 第三讲

1.旋转矩阵

2.旋转向量和欧拉角

3.四元数


1.旋转矩阵

1.1点 向量 坐标系

向量 是空间中存在的有方向有长度的一样东西,向量不等于坐标,不同坐标系下向量的坐标表示也不尽相同。只有确定了一个坐标系,我们才能说这个向量的坐标是多少。

{\pmb a} =\left [ {\pmb e_{1}}, {\pmb e_{2}}, {\pmb e_{3}} \right ] \begin{bmatrix} a_{1}\\ a_{2}\\a_{3} \end{bmatrix} =a_{1}{\pmb e_{1}}+a_{2} {\pmb e_{2}}+a_{3}{\pmb e_{3}} \ \eqno(3.1)   

向量的外积运算 

{\pmb a}\times {\pmb b}=\begin{bmatrix}{\pmb i}&{\pmb j}&{\pmb k}\\ a_{1}&a_{2}&a_{3}\\ b_{1}&b_{2}&b_{3}\end{bmatrix}=\begin{bmatrix}a_{2}b_{3}-a_{3}b_{2}\\ a_{3}b_{1}-a_{1}b_{3}\\a_{1}b_{2}-a_{2}b_{1}\end{bmatrix}=\begin{bmatrix}0&-a_{3}&a_{2}\\ a_{3}&0&-a_{1}\\ -a_{2}&a_{1}&0 \end{bmatrix} {\pmb b}\triangleq {\pmb a}^{\Lambda }{\pmb b} \ \eqno(3.2) 

其中,^{\Lambda }代表反对称矩阵,即{\pmb a}=\begin{bmatrix}a_{1}\\ a_{2} \\ a_{3} \end{bmatrix} and \ \ {\pmb a}^{\Lambda }=\begin{bmatrix}0&-a_{3}&a_{2}\\ a_{3}&0&-a_{1}\\ -a_{2}&a_{1}&0 \end{bmatrix} \ \eqno(3.3) 

外积可以表示旋转,利用右手法则,大拇指朝向就是旋转向量的方向,事实也是{\pmb a}\times {\pmb b}的方向。所以{\pmb a}{\pmb b}的旋转就可以由大拇指朝向的向量{\pmb \omega }来表示,也就是说,在这个坐标系下,旋转可以用三个实数来描述(这三个实数就是{\pmb \omega }的坐标)

1.2坐标系间的欧式变换

{\pmb a} =\left [ {\pmb e_{1}}, {\pmb e_{2}}, {\pmb e_{3}} \right ] \begin{bmatrix} a_{1}\\ a_{2}\\a_{3} \end{bmatrix} =\left [ {​{\pmb e_{1}}}', {​{\pmb e_{2}}}',{​{\pmb e_{3}}}' \right ] \begin{bmatrix} {a_{1}}' \\ {a_{2}}' \\{a_{3}}'\end{bmatrix} \ \eqno(3.4) 

同一个向量在不同坐标系下有不同的坐标表示,但这都表示的是一个向量,这个向量是固有存在的。

现在将上式(3.4)左乘\begin{bmatrix} e_{1}^{T}\\ e_{2}^{T}\\ e_{3}^{T} \end{bmatrix},得到

式 (3.5) 中的{\pmb R}为旋转矩阵,旋转矩阵 {\pmb R} 的特殊性质: 

旋转矩阵是行列式为 1 的正交矩阵(旋转矩阵的逆为自身转置,逆矩阵\pmb R^{-1}代表一个相反的旋转)

旋转矩阵的集合称之为特殊正交群

{\bf SO}(n)=\left \{\pmb R\in \mathbb{R}^{n\times n} }\Big| \pmb R \pmb R^{T}={ \emph I} &, det( {\pmb R})=1|\right \} \ \eqno(3.6)

1.3 变换矩阵和齐次变换

之前的变换表达式{​{\pmb a}}'={\pmb R\pmb a+\pmb t} \ \eqno(3.7),如果发生多次变换,{​{\pmb a}}''={\pmb R_{2}} \left ( {\pmb R_{1} \pmb a+\pmb t_{1}} \right ) +{\pmb t_{2}} \ \eqno(3.8)(2次),这样使得计算过于麻烦,所以引入一个自由度,利用齐次坐标和变换矩阵重写(3.7)

\begin{bmatrix} {​{\pmb a}}' \\ 1 \end{bmatrix} =\begin{bmatrix} {\pmb R} & {\pmb t}\\ 0^{T} &1\end{bmatrix} \begin{bmatrix} {\pmb a} \\ 1 \end{bmatrix} \triangleq {\emph T} \begin{bmatrix} {\pmb a} \\ 1 \end{bmatrix} \ \eqno(3.9) 式子中的 {\emph T} 称为变换矩阵,这种矩阵又称为特殊欧式群(Special Euclidean Group): 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值