点、向量与旋转向量

参考: 矩阵分析,slam十四讲


1. 点

是空间中的某个坐标,是绝对的,它的值是参照原点的,而向量用于表示力和速度等具有方向大小的量, 通常用具有长度和方向的线段来表示.

图片名称

2. 向量

表示从起点指向某处的一个箭头,不要将向量和它的坐标两个概念混淆,向量是空间中一样东西,比如 a ⃗ \vec a a ,这里 a ⃗ \vec a a 并不是与若干实数相关联的,只有当我们指定这个三维空间中某个坐标系时,才可谈论该向量在此坐标系下的坐标.

2.1 向量的几何表示

直观上,向量通常被标示为一个带箭头的有向线段。线段的长度表示向量的大小(或称模长),向量的方向即箭头所指的方向
给定两点 A A A B B B 时,就可确定一固定向量:如确定一个一个始于从点 A A A 终于点 B B B 的向量,符号表示为: A B ⃗ \vec{AB} AB .
在三维空间,虽然点和向量都具有三个分量,但对于向量,如果将向量放在坐标系中的任何位置(平移),都不会改变其性质,因为向量表示的是方向和大小,与位置距离无关,它的值是相对与基准点的.

2.2 向量的代数表示

代数表示指在指定了一个坐标系之后,用一个向量在该坐标系下的坐标来表示该向量. 对于自由向量,将向量的起点平移到坐标原点后,向量就可以用一个坐标系下的一个点来表示,该点的坐标值即向量的终点坐标.
即,在取定一组基后,线性空间中的元素与坐标(也就是一个向量)一一对应.


3. 旋转向量

顾名思义,就是指向量之间的旋转,每一个向量又都对应一个坐标系,因此又表示两个坐标系之间的旋转.
李代数 s o 3 so3 so3 就是旋转向量,假设存在李代数 ϕ = θ n \phi=\theta \boldsymbol n ϕ=θn,其中角度 θ \theta θ 表示旋转角, n \boldsymbol n n 表示旋转轴(单位向量). 所以,旋转向量 ϕ \phi ϕ 的方向与旋转轴一致,长度等于旋转角.

计算旋转向量:叉乘(外积)
a × b = a ∧ b a \times b=a^{\wedge}b a×b=ab
注意叉乘的先后顺序,表示从 a a a 转向 b b b.
举例,orb-vio中估计重力向量惯性坐标系到VINS系统的世界坐标系的旋转变换时,显然重力是一个向量,其大小和朝向并不会随着坐标系的旋转而发生变化,重力向量在两个坐标系不同,可以将
R W I = E x p ( v ^ θ ) v ^ = g I ^ × g W ^ ∥ g I ^ × g W ^ ∥ ,    θ = a t a n 2 ( ∥ g I ^ × g W ^ ∥ ,   g I ^ ⋅ g W ^ ) R_{WI}=Exp(\hat {\boldsymbol v} \theta) \\ \hat {\boldsymbol v} =\frac{\hat {\boldsymbol g_I} \times \hat {\boldsymbol g_W}}{ \| \hat {\boldsymbol g_I} \times \hat {\boldsymbol g_W} \|}, \ \ \theta=atan2( \| \hat {\boldsymbol g_I} \times \hat {\boldsymbol g_W} \|, \ \hat {\boldsymbol g_I} \cdot \hat {\boldsymbol g_W}) RWI=Exp(v^θ)v^=gI^×gW^gI^×gW^,  θ=atan2(gI^×gW^, gI^gW^)


@leatherwang
二零一九年九月二十四日

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值