2024 CVPR AIGC集合

本文介绍了2024年CVPR会议上关于AIGC的先进技术,重点关注3D重建和talking-head生成。包括点基头部avatar、神经脸部渲染、细节精确的面部重建,以及保留身份的对话头像生成和多模态情绪驱动的高保真面部动画。这些研究展示了如何通过解纠缠、几何建模、预训练编码和数据增强等方法实现真实感的3D人脸合成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完全外行,不建议参考

一、3D重建

  1. PointAvatar: Deformable Point-based Head Avatars from Videos
    对原始颜色进行解纠缠,得到固有反射和相关阴影。
    基于可变形点云对表情、颜色、位置等信息进行建模。
    总结:可以看作是对局部像素的分解与扩展。
    在这里插入图片描述

  2. NeuFace: Realistic 3D Neural Face Rendering from Multi-view Images
    通过神经渲染技术获得底层的几何表示。
    基于几何、物理、光照进行建模。
    总结:对全局结构的关注和扩展。
    在这里插入图片描述

  3. A Hierarchical Representation Network for Accurate and Detailed Face Reconstruction from In-The-Wild Images

二、talking-head

  1. Me
### 关于2024CVPR会议中的图像分割论文和主题 #### 图像分割技术的发展趋势 近年来,随着计算机视觉领域研究的不断深入,图像分割作为其中的关键技术之一也取得了显著进展。特别是在深度学习方法的支持下,许多新的算法和技术被提出并应用于实际场景中[^1]。 #### 2024 CVPR会议上关于图像分割的研究热点 在即将举行的2024年度IEEE国际计算机视觉与模式识别大会(CVPR)上,预计会有大量高质量的论文提交到图像分割这一重要方向。这些工作主要集中在以下几个方面: - **基于Transformer架构的新模型设计** 利用自注意力机制来改进特征提取过程,在保持计算效率的同时提高分割精度。 - **多模态数据融合** 结合来自不同传感器的数据源(如RGB-D相机),通过联合训练的方式增强对复杂环境的理解能力。 - **弱监督/半监督学习框架下的探索** 减少标注成本成为当前亟待解决的问题之一;因此如何利用少量标记样本指导网络收敛至更优解成为了研究重点。 - **实时处理性能优化** 针对于移动设备端应用需求日益增长的趋势,降低推理延迟以及减少内存占用量显得尤为重要。 ```python import torch from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor model_name_or_path = "nvidia/mit-b0" feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name_or_path) model = SegformerForSemanticSegmentation.from_pretrained(model_name_or_path) def preprocess_image(image): inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits.cpu().detach().numpy() return logits.argmax(axis=1)[0] # Example usage with a PIL Image object named 'img' segmented_img = preprocess_image(img) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值