在进行语音识别时,给定了一个输入音频片段X,并要求输出片段对应的文字记录Y,这个例子里的输入和输出数据,都是序列数据,因为X是一个按时序播放的音频片段,输出Y是一系列单词,所以之后要学习的是一些序列模型,如循环神经网络等在语音识别方面是非常有用的。
音乐生成问题,是使用序列数据的另一个例子,只有输出数据Y是序列,而输入数据可以是空集,也可以是个单一整数,这个数可能指代你想要生成的音乐风格,也可能是你想要生成的那首曲子的头几个音符,无论怎样,输入X可以是空的,或者就是个数字,然后输出序列Y。
在处理情感问题时,输入数据X是序列。
序列模型在处理DNA序列分析中也十分有用,你的DNA可以用ACGT四个字母来表示,所以给定一段DNA序列,你能够标记处哪部分是匹配某种蛋白质。
在机器翻译过程中,输入一句话,需要翻译成另外一种语言。
在进行视频行为识别时,你可能会得到一系列视频帧,然后要求你识别其中的行为。
在进行命名实体识别时,可能会给定一个句子,要你识别出句中的人名。
所有这些问题都可以被称作使用标签数据
(
X
,
Y
)
(X,Y)
(X,Y)作为训练集的监督学习,但是从这一系列例子中可以看出,序列问题有很多种不同类型,有些问题里,输入数据X和输出数据Y都是序列,但就算在那种情况下,X和Y有时也会不一样长,或者是在命名实体任务中X和Y有相同的数据长度。在另一些问题中,只有X或者Y是序列。
所以在本次课程中,你会学到适用于不同情况的序列模型。