$$ 计算 \iint_{D}e^{-x^2-y^2}dxdy ,其中D是由圆心在原点,半径为a的圆周所围成的闭区域 $$

解:在极坐标系中,闭区域D可表示为
0 ≤ ρ ≤ a 0 ≤ θ ≤ 2 π ∬ D e − x 2 − y 2 d x d y = ∬ D e − ρ 2 ρ d ρ d θ = ∫ 0 2 π [ ∫ 0 a e − ρ 2 ρ d ρ ] d θ = ∫ 0 2 π [ ∫ 0 a e − ρ 2 ] 0 a d θ = 1 2 ( 1 − e − a 2 ) ∫ 0 2 π d θ = π ( 1 − e − a 2 ) 0\le\rho\le a\qquad 0\le\theta\le 2\pi \\ \iint_{D}e^{-x^2-y^2}dxdy = \iint_{D}e^{-\rho^2}\rho d\rho d\theta =\int_0^{2\pi}[\int_0^ae^{-\rho^2}\rho d\rho]d\theta \\ = \int_0^{2\pi}[\int_0^ae^{-\rho^2}]_0^ad\theta= \frac{1}{2}(1-e^{-a^2})\int_0^{2\pi}d\theta=\pi(1-e^{-a^2}) 0ρa0θ2πDex2y2dxdy=Deρ2ρdρdθ=02π[0aeρ2ρdρ]dθ=02π[0aeρ2]0adθ=21(1ea2)02πdθ=π(1ea2)

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值