解:在极坐标系中,闭区域D可表示为
0
≤
ρ
≤
a
0
≤
θ
≤
2
π
∬
D
e
−
x
2
−
y
2
d
x
d
y
=
∬
D
e
−
ρ
2
ρ
d
ρ
d
θ
=
∫
0
2
π
[
∫
0
a
e
−
ρ
2
ρ
d
ρ
]
d
θ
=
∫
0
2
π
[
∫
0
a
e
−
ρ
2
]
0
a
d
θ
=
1
2
(
1
−
e
−
a
2
)
∫
0
2
π
d
θ
=
π
(
1
−
e
−
a
2
)
0\le\rho\le a\qquad 0\le\theta\le 2\pi \\ \iint_{D}e^{-x^2-y^2}dxdy = \iint_{D}e^{-\rho^2}\rho d\rho d\theta =\int_0^{2\pi}[\int_0^ae^{-\rho^2}\rho d\rho]d\theta \\ = \int_0^{2\pi}[\int_0^ae^{-\rho^2}]_0^ad\theta= \frac{1}{2}(1-e^{-a^2})\int_0^{2\pi}d\theta=\pi(1-e^{-a^2})
0≤ρ≤a0≤θ≤2π∬De−x2−y2dxdy=∬De−ρ2ρdρdθ=∫02π[∫0ae−ρ2ρdρ]dθ=∫02π[∫0ae−ρ2]0adθ=21(1−e−a2)∫02πdθ=π(1−e−a2)
$$ 计算 \iint_{D}e^{-x^2-y^2}dxdy ,其中D是由圆心在原点,半径为a的圆周所围成的闭区域 $$
最新推荐文章于 2024-02-02 21:16:24 发布