背景:
有时候需要对点云按一定范围裁剪,也可以计算局部点云的范围,再依照此范围对新点云进行裁剪,这里所说的“范围”在PCL点云处理中称之为“包围盒”。原理就是根据点云四个角点坐标范围进行循环遍历所有符合范围的点云。
以下代码举例说明:
裁剪源点云和目标点云
//计算点云包围盒或根据包围盒坐标裁剪点云
void cropBoxFilterCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_src, pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_tgt) {
//计算局部点云包围盒
//pcl::PointXYZ minPt, maxPt;
//pcl::getMinMax3D(*cloud, minPt, maxPt);
//可得到局部点云最小和最大点的坐标
//std::cout << "最小点坐标: (" << minPt.x << ", " << minPt.y << ", " << minPt.z << ")" << std::endl;
//std::cout << "最大点坐标: (" << maxPt.x << ", " << maxPt.y << ", " << maxPt.z << ")" << std::endl;
//自定义包围盒坐标
//Eigen::Vector4f minPt_, maxPt_;
//minPt_ << minPt.x, minPt.y, minPt.z, 1.0;
//maxPt_ << maxPt.x, maxPt.y, maxPt.z, 1.0;
//源点云(左)
Eigen::Vector4f minPt_src, maxPt_src;
minPt_src << -711.919,999.075, 1120.25, 1.0;
maxPt_src << 294.799, 1134.97, 1930.55, 1.0;
// 创建裁剪对象
//pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_target(new pcl::PointCloud<pcl::PointXYZ>);
//pcl::io::loadPCDFile("C:/pclpoint/1012/0_2023-10-12-18-13-30 - Cloud0.pcd", *cloud_src);
pcl::CropBox<pcl::PointXYZ> cropBoxFilter_src;
cropBoxFilter_src.setInputCloud(cloud_src);
cropBoxFilter_src.setMin(minPt_src);
cropBoxFilter_src.setMax(maxPt_src);
// 执行裁剪操作
//pcl::PointCloud<pcl::PointXYZ>::Ptr croppedCloud(new pcl::PointCloud<pcl::PointXYZ>);
cropBoxFilter_src.filter(*cloud_src);
//目标点云(右)
Eigen::Vector4f minPt_tgt, maxPt_tgt;
minPt_tgt << -703.772, 922.299, 1122.25, 1.0;
maxPt_tgt << 289.434, 1054.49, 1933.88, 1.0;
pcl::CropBox<pcl::PointXYZ> cropBoxFilter_tgt;
cropBoxFilter_tgt.setInputCloud(cloud_tgt);
cropBoxFilter_tgt.setMin(minPt_tgt);
cropBoxFilter_tgt.setMax(maxPt_tgt);
cropBoxFilter_src.filter(*cloud_tgt);
// 保存裁剪后的点云数据
//pcl::io::savePCDFileBinary("C:/pclpoint/1012/cropped_cloud0.pcd", *cloud_src);
//pcl::io::savePCDFileBinary("C:/pclpoint/1012/cropped_cloud1.pcd", *cloud_tgt);
}