[动态系统的建模与分析]15_伯德图,bode图,为什么是20logM?分贝又是什么?

[动态系统的建模与分析]9_一阶系统的频率响应_低通滤波器
[动态系统的建模与分析]8_频率响应_详细数学推导 G(jw)_滤波器
[运放滤波器]3_反相同相比例放大电路_Multisim电路仿真
[运放滤波器]2_运放反馈原理
[运放滤波器]1_理想运放_虚短虚断
[现代控制理论]11_现代控制理论串讲_完结_pdf获取


一个很有用的工具,伯德图。

大学没相关的课程,刚开始工作的时候,频域的东西不是很懂,bode图也很懵,“截止频率”的概念也没有,也听不明白“带宽”到底是个啥。没有系统学一下,别人简单一讲,其实也理解不到。很多东西还是得靠时间慢慢堆。

bode plot

  1. 对于LTI系统,振幅的变化M=|G(jw)|,相位的变化φ=∠G(jw)。

  2. 伯德图作用:描述频率和振幅和相位的关系。

  3. db:源于描述电话电报的信号损失,在这里呢,是功率,10log(测量/参考),常见的描述声音的大小,强度。

  4. 在bode图中,因为振幅和功率之间是个平方关系,所以db就是,20log(M).

  5. 可以直观的看出系统的频率响应,随着频率的增加,幅值的变化,相位的变化,然后对系统的响应做出分析。

  6. 一阶低通滤波器的推导,bode的手绘。

  7. 为什么要用这种方式?取对数的方式,可以把很大的数变的很小。还可以将乘法变为加法。可以将复杂的传递函数分解,手绘出系统的bode图。

在这里插入图片描述
在这里插入图片描述

参考资源链接:[控制系统分析:绘制开环伯德图的步骤与方法](https://wenku.csdn.net/doc/16se78socx) 在控制系统分析中,伯德图是一种重要的工具,它能够直观地表示系统在不同频率下的增益和相位特性。要绘制开环系统伯德图,首先需要从系统的微分方程出发,推导出其传递函数。传递函数是系统输出量的拉普拉斯变换与输入量的拉普拉斯变换之比,在s域内定义了系统的行为。 绘制伯德图的基本步骤包括: 1. 对系统微分方程进行拉普拉斯变换,求得传递函数H(s)。 2. 将传递函数分解为典型环节,如比例环节、积分环节、微分环节和惯性环节等。 3. 计算每个典型环节的对数幅频特性和相频特性。这些计算通常涉及到对s的不同取值进行代入和求解,可以利用MATLAB、Mathematica或其他数值分析软件进行辅助计算。 4. 将计算结果绘制成伯德图,横坐标是频率的对数,纵坐标是增益(以分贝为单位)和相位(以度为单位)。 5. 分析伯德图中的关键频率特性,如截止频率、增益裕度和相位裕度,以及系统稳定性和响应速度。 伯德图不仅帮助我们直观地观察到系统在不同频率下的性能,还可以辅助我们调整控制器参数,优化系统设计。例如,通过改变增益或添加校正环节,我们可以改善系统的相位裕度和增益裕度,从而提高系统的稳定性和响应速度。 为了更深入地理解和掌握开环系统伯德图绘制方法,建议参阅资料《控制系统分析:绘制开环伯德图的步骤与方法》。这本书详细介绍了从理论到实践的完整过程,包括实际案例分析,帮助读者构建起从传递函数到频率特性分析的全面认识。 参考资源链接:[控制系统分析:绘制开环伯德图的步骤与方法](https://wenku.csdn.net/doc/16se78socx)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值