伽马分布定义

本文详细介绍了伽马函数的定义、性质及其在概率统计中的应用——伽马分布。伽马函数与阶乘有密切关系,并且在伽马分布中起到关键作用。伽马分布有两个重要的特例:指数分布和卡方分布。指数分布是伽马分布的特殊情况,而卡方分布是自由度为n的伽马分布。同时,文中还给出了伽马分布的期望和方差的计算公式。
摘要由CSDN通过智能技术生成

伽马函数

伽马函数的定义为 Γ ( α ) = ∫ 0 ∞ x α − 1 e − x d x \Gamma(\alpha)=\int_0^{\infty}x^{\alpha-1}e^{-x}dx Γ(α)=0xα1exdx其中参数 α > 0 \alpha>0 α>0。伽马函数具有如下性质:

  • Γ ( 1 ) = 1 \Gamma(1)=1 Γ(1)=1 Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi} Γ(21)=π
  • Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α),当 α \alpha α为自然数 n n n时,有 Γ ( n + 1 ) = n Γ ( n ) = n ! \Gamma(n+1)=n\Gamma(n)=n ! Γ(n+1)=nΓ(n)=n!

伽马分布

若随机变量 X X X的密度函数为 p ( x ) = { λ α Γ ( α ) x α − 1 e − λ x , x ≥ 0 , 0 , x < 0 , p(x)=\left\{\begin{array}{ll}\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x},&x \ge 0,\\ 0,&x < 0,\end{array}\right.\\ p(x)={Γ(α)λαxα1eλx,0,x0,x<0,则称 X X X服从伽马分布,记作 X ∼ G a ( α , λ ) X \sim Ga(\alpha,\lambda) XGa(α,λ),其中 α > 0 \alpha > 0 α>0为形状参数, λ > 0 \lambda >0 λ>0为尺度参数。

伽马分布 G a ( α , λ ) Ga(\alpha,\lambda) Ga(α,λ)的数学期望和方差

利用伽马函数的性质,不难算得伽马分布 G a ( α , λ ) Ga(\alpha,\lambda) Ga(α,λ)的数学期望为 E ( X ) = λ α Γ ( α ) ∫ 0 ∞ x α e − λ x d x = Γ ( α + 1 ) Γ ( α ) 1 λ = α λ \mathbb{E}(X)=\frac{\lambda^{\alpha}}{\Gamma (\alpha)}\int_0^\infty x^\alpha e^{-\lambda x}dx=\frac{\Gamma (\alpha +1)}{\Gamma(\alpha)}\frac{1}{\lambda}=\frac{\alpha}{\lambda} E(X)=Γ(α)λα0xαeλxdx=Γ(α)Γ(α+1)λ1=λα又因为 E ( X 2 ) = λ α Γ ( α ) ∫ 0 ∞ x α + 1 e − λ x d x = Γ ( α + 2 ) λ 2 Γ ( α ) = α ( α + 1 ) λ 2 \mathbb{E}(X^2)=\frac{\lambda^\alpha}{\Gamma(\alpha)}\int ^{\infty}_0x^{\alpha+1}e^{-\lambda x}dx=\frac{\Gamma(\alpha+2)}{\lambda^2\Gamma(\alpha)}=\frac{\alpha(\alpha+1)}{\lambda^2} E(X2)=Γ(α)λα0xα+1eλxdx=λ2Γ(α)Γ(α+2)=λ2α(α+1)由此得 X X X的方差为 V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = α ( α + 1 ) λ 2 − ( α λ ) 2 = α λ 2 \mathrm{Var}(X)=\mathbb{E}(X^2)-[\mathbb{E}(X)]^2=\frac{\alpha(\alpha+1)}{\lambda^2}-\left(\frac{\alpha}{\lambda}\right)^2=\frac{\alpha}{\lambda^2} Var(X)=E(X2)[E(X)]2=λ2α(α+1)(λα)2=λ2α

伽马分布的两个特例

指数分布: α = 1 \alpha=1 α=1时的伽马分布就是指数分布,即 G a ( 1 , λ ) = exp ⁡ ( λ ) Ga(1,\lambda)=\exp(\lambda) Ga(1,λ)=exp(λ)
卡方分布:称 α = n / 2 \alpha=n/2 α=n/2 λ = 1 / 2 \lambda=1/2 λ=1/2时的伽马分布是自由度 n n n X 2 \mathcal{X}^2 X2(卡方)分布,记为 X 2 ( n ) \mathcal{X}^2(n) X2(n),即 G a ( n 2 , 1 2 ) = X 2 ( n ) , Ga(\frac{n}{2},\frac{1}{2})=\mathcal{X}^2(n), Ga(2n,21)=X2(n),其密度函数为 p ( x ) = { 1 2 n 2 Γ ( n 2 ) e − n 2 x n 2 − 1 , x > 0 0 , x ≤ 0 p(x)=\left\{\begin{array}{ll}\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{n}{2}}x^{\frac{n}{2}-1},&x>0\\0,&x \le 0\end{array}\right. p(x)={22nΓ(2n)1e2nx2n1,0,x>0x0这里 n n n X 2 \mathcal{X}^2 X2分布的唯一参数,称为自由度,它可以是正实数。因为 X 2 \mathcal{X}^2 X2分布是特殊的伽马分布,故由伽马分布的期望和方差,很容易得到 X 2 \mathcal{X}^2 X2分布的期望和方差为 E ( X ) = n , V a r ( X ) = 2 n . \mathbb{E}(X)=n,\mathrm{Var}(X)=2n. E(X)=n,Var(X)=2n.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值