四元数相乘的雅可比矩阵

四元数相乘的雅可比矩阵

两个四元数 q 1 , q 2 q_1, q_2 q1,q2定义如下:
q 1 = [ w 1 v 1 ⃗ ] = [ w 1 x 1 y 1 z 1 ] q 2 = [ w 2 v 2 ⃗ ] = [ w 2 x 2 y 2 z 2 ] q_1 = \begin{bmatrix} w_1 \\ \vec{v_1} \end{bmatrix} = \begin{bmatrix} w_1\\x_1\\y_1\\z_1 \end{bmatrix} \\ q_2 = \begin{bmatrix} w_2 \\ \vec{v_2} \end{bmatrix} = \begin{bmatrix} w_2\\x_2\\y_2\\z_2 \end{bmatrix} q1=[w1v1 ]= w1x1y1z1 q2=[w2v2 ]= w2x2y2z2
令四元数 q 3 q_3 q3 q 1 q_1 q1 q 2 q_2 q2的乘积:
q 3 = q 1 ∘ q 2 q_3 = q_1 \circ q_2 q3=q1q2
其中 ∘ \circ 表示四元数乘法。

本文将给出 q 3 q_3 q3分别对 q 1 q_1 q1 q 2 q_2 q2的雅可比矩阵,其不严谨地书写为 d q 3 d q 1 \frac{dq_3}{dq_1} dq1dq3 d q 3 d q 2 \frac{dq_3}{dq_2} dq2dq3.

首先定义两个概念:左叉乘矩阵和右叉乘矩阵。对于两个三维向量 v 1 ⃗ = [ x 1   y 1   z 1 ] T , v 2 ⃗ = [ x 2   y 2   z 2 ] T \vec{v_1} = [x_1~y_1~z_1]^T, \vec{v_2} = [x_2~y_2~z_2]^T v1 =[x1 y1 z1]T,v2 =[x2 y2 z2]T,左叉乘矩阵 [ ⋅ ] l ∈ R 3 × 3 [\cdot]_l \in R^{3 \times 3} []lR3×3定义为:
v 1 ⃗ × v 2 ⃗ = [ v 1 ⃗ ] l v 2 ⃗ = [ 0 − z 1 y 1 z 1 0 − x 1 − y 1 x 1 0 ] v 2 ⃗ \vec{v_1} \times \vec{v_2} = \left[ \vec{v_1} \right]_l \vec{v_2} = \begin{bmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix} \vec{v_2} v1 ×v2 =[v1 ]lv2 = 0z1y1z10x1y1x10 v2
右叉乘矩阵 [ ⋅ ] r ∈ R 3 × 3 [\cdot]_r \in R^{3 \times 3} []rR3×3定义为:
v 1 ⃗ × v 2 ⃗ = [ v 2 ⃗ ] r v 1 ⃗ = [ 0 z 2 − y 2 − z 2 0 x 2 y 2 − x 2 0 ] v 1 ⃗ \vec{v_1} \times \vec{v_2} = \left[ \vec{v_2} \right]_r \vec{v_1} = \begin{bmatrix} 0 & z_2 & -y_2\\ -z_2 & 0 & x_2\\ y_2 & -x_2 & 0 \end{bmatrix} \vec{v_1} v1 ×v2 =[v2 ]rv1 = 0z2y2z20x2y2x20 v1
Finally,雅可比矩阵如下所示:
d q 3 d q 1 = [ w 2 − v 2 ⃗ v 2 ⃗ w 2 I + [ v 2 ⃗ ] r ] = [ w 2 − x 2 − y 2 − z 2 x 2 w 2 z 2 − y 2 y 2 − z 2 w 2 x 2 z 2 y 2 − x 2 w 2 ] d q 3 d q 2 = [ w 1 − v 1 ⃗ v 1 ⃗ w 1 I + [ v 1 ⃗ ] l ] = [ w 1 − x 1 − y 1 − z 1 x 1 w 1 − z 1 y 1 y 1 z 1 w 1 − x 1 z 1 − y 1 x 1 w 1 ] \frac{dq_3}{dq_1} = \begin{bmatrix} w_2 & -\vec{v_2} \\ \vec{v_2} & w_2I + \left[ \vec{v_2} \right]_r \end{bmatrix}= \begin{bmatrix} w_2 & -x_2 & -y_2 & -z_2 \\ x_2 & w_2 & z_2 & -y_2\\ y_2 & -z_2 & w_2 & x_2\\ z_2 & y_2 & -x_2 & w_2 \end{bmatrix} \\ \frac{dq_3}{dq_2} = \begin{bmatrix} w_1 & -\vec{v_1} \\ \vec{v_1} & w_1I + \left[ \vec{v_1} \right]_l \end{bmatrix}= \begin{bmatrix} w_1 & -x_1 & -y_1 & -z_1 \\ x_1 & w_1 & -z_1 & y_1 \\ y_1 & z_1 & w_1 & -x_1 \\ z_1 & -y_1 & x_1 & w_1 \end{bmatrix} dq1dq3=[w2v2 v2 w2I+[v2 ]r]= w2x2y2z2x2w2z2y2y2z2w2x2z2y2x2w2 dq2dq3=[w1v1 v1 w1I+[v1 ]l]= w1x1y1z1x1w1z1y1y1z1w1x1z1y1x1w1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值