目录
增量联邦学习
增量联邦学习是联邦学习的一种扩展形式,它结合了增量学习的特点,使得在联邦学习的框架下能够逐步学习和更新模型,而不仅仅局限于一次性地处理所有数据。增量联邦学习特别适用于那些数据持续产生且需要实时更新的场景。
增量联邦学习与普通联邦学习的不同点:
- 数据处理方式:
- 普通联邦学习:通常是在每个通信轮次中,所有参与方(如客户端或设备)都会使用其当前可用的全部数据来更新本地模型,并将更新后的模型参数或梯度发送到中央服务器进行聚合。这种方式要求在每个轮次中都能获取到完整的数据集。
- <