大模型并行:TP, PP, DP,MP

1256 篇文章 ¥199.90 ¥299.90
832 篇文章 ¥199.90 ¥299.90
655 篇文章 ¥199.90 ¥299.90

目录

大模型并行:TP, PP, DP,MP

张量并行(TP)

数据并行(DP)

模型并行(MP)

流水线并行(PP)

TP:张量模型并行

一、定义与基本原理

二、切分方式

三、主要优势与挑战

优势

挑战

四、应用场景

五、注意事项


大模型并行:TP, PP, DP,MP

数据并行(Data Parallelism, DP)、模型并行(Model Parallelism, MP)和流水线并行(Pipeline Parallelism, PP)是并行计算中三种常见的策略,它们各自具有独特的特点和适用场景。

张量并行(TP)

解决内存墙的问题。模型的权重矩阵被分割成多个部分,每个部分由不同的设备负责计算。TP的通信主要发生在前向和后向传播过程中,设备之间需要交换分割后的中间结果。由于需要在每次前向和后向传播时进行通信,TP的通信量也相当大。需要进行concat操作。

数据并行(DP)

数据并行是一种将数据集划分为多个部分,并

<think>好的,我现在需要回答用户关于大模型训练中的训练管道(Training Pipeline, TP)的问题。首先,我需要明确用户所说的TP具体指的是什么。因为在机器学习中,TP可能有不同的含义,比如Tensor Parallelism(张量并行)或者Training Pipeline(训练管道)。根据用户提供的引用资料,特别是引用[2]中提到PTD-P结合了DP(数据并行)、PP(管道并行TP(张量并行),这里TP应该是指张量并行。 接下来,我需要整理用户提供的引用内容。引用[1]提到了TeraPipe,它利用Transformer-based模型的auto-regressive性质进行管道并行。引用[2]则指出PTD-P结合了三种并行方法,包括TP。引用[3]讨论了模型检索阅读模块的联合训练,这可能与训练管道的优化有关,但不太直接相关。 用户的问题是关于大模型训练中的TP,即训练管道。但根据引用[2],TP在这里更可能指张量并行。因此,我需要解释TP并行训练中的角色,以及它如何与其他并行方法(如DPPP)结合。同时,可能需要澄清术语,避免混淆,因为用户可能将Training Pipeline缩写为TP,但实际在文献中TP常指张量并行。 需要确保回答的结构清晰,分点说明TP的概念、工作原理、与其他并行的区别,以及应用场景。同时,根据用户要求,生成相关问题。最后,引用相关的文献,注意引用标识的正确使用。 另外,要注意用户可能存在的术语混淆,比如误将Training Pipeline简称为TP,而实际上在引用[2]中TP是Tensor Parallelism。因此,在回答中需要明确这一点,避免误导。可能需要在回答开头澄清术语,并解释两种可能的含义,但根据上下文,确定TP指的是张量并行。</think>### 大模型训练中的管道并行(Pipeline Parallelism, PP)与张量并行(Tensor Parallelism, TP) 在大型语言模型(LLM)训练中,**TP(Tensor Parallelism,张量并行)** 是一种关键并行技术,旨在通过分割模型参数来加速训练。然而需注意,术语“TP”在不同场景下可能指代不同概念: 1. **Tensor Parallelism(张量并行)**:将模型层的参数切分到多个设备,例如将矩阵乘法分块计算[^2]。 2. **Training Pipeline(训练管道)**:广义上指训练流程的优化策略(如数据加载、计算、通信的流水线化)。 根据引用[2]的上下文,TP更可能指张量并行。以下从并行技术角度展开说明: --- #### 1. **张量并行TP)的核心原理** - **目标**:解决单个设备内存不足的问题,将模型参数分片到多设备并行计算。 - **实现方式**: 以Transformer层为例,将全连接层的权重矩阵$W$按行或列切分,每个设备计算局部结果后同步聚合。例如: $$y = Wx \quad \Rightarrow \quad y_1 = W_1x,\ y_2 = W_2x \quad \Rightarrow \quad y = \text{concat}(y_1, y_2)$$ - **优势**:降低单设备显存需求,提升模型规模上限。 --- #### 2. **TP与其他并行技术的对比** - **数据并行DP)**:复制模型参数到多设备,按批次数据分片(如PyTorch的`DataParallel`)。 - **管道并行PP)**:将模型按层切分到多设备,形成流水线(如引用[1]的TeraPipe)。 - **混合并行**:实际训练中常组合使用TPPPDP。例如引用[2]的PTD-P方法结合三者,提升吞吐量并保持优化器一致性。 --- #### 3. **训练管道的优化挑战** - **通信开销**:TP需频繁同步中间结果,设备间带宽成为瓶颈。 - **负载均衡**:参数分片需均匀分配计算量,避免设备空闲。 - **与PP的协同**:如引用[1]所述,Transformer的自回归特性可被用于流水线设计,但需处理序列依赖。 --- #### 4. **应用场景** - **超大规模模型训练**:如GPT-3、PaLM等千亿参数模型需TP+PP+DP联合优化。 - **硬件适配**:在GPU集群或TPU Pod上,TP可针对高速互连网络(如NVLink)优化分片策略。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值