model.classifier:分类头
分类头(model.classifier)含义
在基于Transformer架构的模型(如BERT、GPT等 )用于分类任务时,“分类头(model.classifier)” 是模型的一个重要组成部分。以Hugging Face的Transformers库为例,许多预训练模型在完成通用的预训练任务(如语言建模 )后,为适配具体的分类任务(如情感分析、主题分类 ),会在模型的基础上添加一个全连接层,这个全连接层就被称为分类头。
具体来说,在分类任务中,Transformer模型首先通过编码器(如BERT的多层双向Transformer编码器 )对输入文本进行特征提取,将输入序列编码为特征向量。然后,这些特征向量会被输入到分类头(model.classifier ),分类头再将这些特征映射到不同类别的概率上。比如在二分类的情感分析任务中,分类头会输出文本属于“正面”和“负面”情感的概率,通过比较这两个概率来确定文本的情感倾向。
举个例子,使用BERT进行影评情感分析,代码如下: