参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
5.复合校正
5.1 按扰动补偿的复合校正
- 如果在系统的反馈控制回路中加入前馈通路,组成一个前馈控制和反馈控制相组合的系统,只要系统参数选择得当,既可以保持系统稳定,极大减小乃至消除稳态误差,还可以抑制几乎所有的可量测扰动,包括低频强扰动;这样的系统称为复合控制系统;
- 复合校正中的前馈装置按照不变性原理进行设计,分为按扰动补偿设计和按输入补偿设计;
设按扰动补偿的复合控制系统如下图所示,
其中:
- N ( s ) N(s) N(s)为可量测扰动;
- G 1 ( s ) 、 G 2 ( s ) G_1(s)、G_2(s) G1(s)、G2(s)为反馈部分的前向通路传递函数;
- G n ( s ) G_n(s) Gn(s)为前馈补偿装置传递函数;
复合校正的目的:通过恰当选择 G n ( s ) G_n(s) Gn(s),使扰动 N ( s ) N(s) N(s)经过 G n ( s ) G_n(s) Gn(s)对系统输出 C ( s ) C(s) C(s)产生补偿作用,以抵消扰动 N ( s ) N(s) N(s)通过 G 2 ( s ) G_2(s) G2(s)对输出 C ( s ) C(s) C(s)的影响;
扰动作用下的输出为:
C
n
(
s
)
=
G
2
(
s
)
[
1
+
G
1
(
s
)
G
n
(
s
)
]
1
+
G
1
(
s
)
G
2
(
s
)
N
(
s
)
C_n(s)=\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)}N(s)
Cn(s)=1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]N(s)
扰动作用下的误差为:
E
n
(
s
)
=
−
C
n
(
s
)
=
−
G
2
(
s
)
[
1
+
G
1
(
s
)
G
n
(
s
)
]
1
+
G
1
(
s
)
G
2
(
s
)
N
(
s
)
E_n(s)=-C_n(s)=-\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)}N(s)
En(s)=−Cn(s)=−1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]N(s)
若选择前馈补偿装置的传递函数为:
G
n
(
s
)
=
−
1
G
1
(
s
)
G_n(s)=-\frac{1}{G_1(s)}
Gn(s)=−G1(s)1
则有:
C
n
(
s
)
=
0
,
E
n
(
s
)
=
0
C_n(s)=0,E_n(s)=0
Cn(s)=0,En(s)=0;因此,上式称为对扰动的误差全补偿条件。
从补偿原理看,由于前馈补偿实际是采用开环控制方式去补偿可量测的扰动信号,因此,前馈补偿并不改变反馈控制系统的特性;从抑制扰动的角度看,前馈控制可以减轻反馈控制的负担,因此,反馈控制系统的增益可以取得小一些,以有利于系统的稳定性;
采用前馈控制补偿扰动信号对系统输出的影响,是提高系统控制准确度的有效措施;采用前馈补偿,要求扰动信号可以量测,同时要求前馈补偿装置在物理上是可实现的,且力求简单;在实际应用中,多采用近似全补偿或稳态全补偿方案;一般,主要扰动引起的误差,由前馈控制进行全部或部分补偿,次要扰动引起的误差,由反馈控制予以抑制;前馈控制要求构成前馈补偿装置的元部件具有较高的参数稳定性;
5.2 按输入补偿的复合校正
设按输入补偿的复合控制系统如上图所示,其中, G ( s ) G(s) G(s)为反馈系统的开环传递函数, G r ( s ) G_r(s) Gr(s)为前馈补偿装置的传递函数;
系统的输出量为:
C
(
s
)
=
[
E
(
s
)
+
G
r
(
s
)
R
(
s
)
]
G
(
s
)
C(s)=[E(s)+G_r(s)R(s)]G(s)
C(s)=[E(s)+Gr(s)R(s)]G(s)
系统误差为:
E
(
s
)
=
R
(
s
)
−
C
(
s
)
E(s)=R(s)-C(s)
E(s)=R(s)−C(s)
可得:
C
(
s
)
=
[
1
+
G
r
(
s
)
]
G
(
s
)
1
+
G
(
s
)
R
(
s
)
C(s)=\frac{[1+G_r(s)]G(s)}{1+G(s)}R(s)
C(s)=1+G(s)[1+Gr(s)]G(s)R(s)
如果选择前馈补偿装置传递函数为:
G
r
(
s
)
=
1
G
(
s
)
G_r(s)=\frac{1}{G(s)}
Gr(s)=G(s)1
则有:
C
(
s
)
=
R
(
s
)
C(s)=R(s)
C(s)=R(s)
即在上式成立的条件下,系统的输出量在任何时刻都可以完全无误地复现输入量,具有理想的时间响应特性;
同时有:
E
(
s
)
=
[
1
−
G
r
(
s
)
G
(
s
)
]
1
+
G
(
s
)
R
(
s
)
E(s)=\frac{[1-G_r(s)G(s)]}{1+G(s)}R(s)
E(s)=1+G(s)[1−Gr(s)G(s)]R(s)