自动控制原理6.5:复合校正

复合校正是自动控制理论中一种有效的方法,它结合了前馈控制和反馈控制,旨在提高系统的稳态精度并抑制扰动影响。通过设计前馈补偿装置的传递函数,可以实现对可量测扰动的误差全补偿,从而减小甚至消除稳态误差。在输入补偿的复合校正中,前馈补偿装置用于使系统的输出能精确跟踪输入,实现理想的时间响应特性。实际应用中,常采用近似全补偿方案,针对主要和次要扰动采取不同的补偿策略,确保系统的稳定性和控制精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》



5.复合校正
5.1 按扰动补偿的复合校正
  • 如果在系统的反馈控制回路中加入前馈通路,组成一个前馈控制和反馈控制相组合的系统,只要系统参数选择得当,既可以保持系统稳定,极大减小乃至消除稳态误差,还可以抑制几乎所有的可量测扰动,包括低频强扰动;这样的系统称为复合控制系统;
  • 复合校正中的前馈装置按照不变性原理进行设计,分为按扰动补偿设计和按输入补偿设计;

设按扰动补偿的复合控制系统如下图所示,

23

其中:

  • N ( s ) N(s) N(s)为可量测扰动;
  • G 1 ( s ) 、 G 2 ( s ) G_1(s)、G_2(s) G1(s)G2(s)为反馈部分的前向通路传递函数;
  • G n ( s ) G_n(s) Gn(s)为前馈补偿装置传递函数;

复合校正的目的:通过恰当选择 G n ( s ) G_n(s) Gn(s),使扰动 N ( s ) N(s) N(s)经过 G n ( s ) G_n(s) Gn(s)对系统输出 C ( s ) C(s) C(s)产生补偿作用,以抵消扰动 N ( s ) N(s) N(s)通过 G 2 ( s ) G_2(s) G2(s)对输出 C ( s ) C(s) C(s)的影响;

扰动作用下的输出为:
C n ( s ) = G 2 ( s ) [ 1 + G 1 ( s ) G n ( s ) ] 1 + G 1 ( s ) G 2 ( s ) N ( s ) C_n(s)=\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)}N(s) Cn(s)=1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]N(s)
扰动作用下的误差为:
E n ( s ) = − C n ( s ) = − G 2 ( s ) [ 1 + G 1 ( s ) G n ( s ) ] 1 + G 1 ( s ) G 2 ( s ) N ( s ) E_n(s)=-C_n(s)=-\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)}N(s) En(s)=Cn(s)=1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]N(s)
若选择前馈补偿装置的传递函数为:
G n ( s ) = − 1 G 1 ( s ) G_n(s)=-\frac{1}{G_1(s)} Gn(s)=G1(s)1
则有: C n ( s ) = 0 , E n ( s ) = 0 C_n(s)=0,E_n(s)=0 Cn(s)=0En(s)=0;因此,上式称为对扰动的误差全补偿条件。

从补偿原理看,由于前馈补偿实际是采用开环控制方式去补偿可量测的扰动信号,因此,前馈补偿并不改变反馈控制系统的特性;从抑制扰动的角度看,前馈控制可以减轻反馈控制的负担,因此,反馈控制系统的增益可以取得小一些,以有利于系统的稳定性;

采用前馈控制补偿扰动信号对系统输出的影响,是提高系统控制准确度的有效措施;采用前馈补偿,要求扰动信号可以量测,同时要求前馈补偿装置在物理上是可实现的,且力求简单;在实际应用中,多采用近似全补偿或稳态全补偿方案;一般,主要扰动引起的误差,由前馈控制进行全部或部分补偿,次要扰动引起的误差,由反馈控制予以抑制;前馈控制要求构成前馈补偿装置的元部件具有较高的参数稳定性;

5.2 按输入补偿的复合校正

24

设按输入补偿的复合控制系统如上图所示,其中, G ( s ) G(s) G(s)为反馈系统的开环传递函数, G r ( s ) G_r(s) Gr(s)为前馈补偿装置的传递函数;

系统的输出量为:
C ( s ) = [ E ( s ) + G r ( s ) R ( s ) ] G ( s ) C(s)=[E(s)+G_r(s)R(s)]G(s) C(s)=[E(s)+Gr(s)R(s)]G(s)
系统误差为:
E ( s ) = R ( s ) − C ( s ) E(s)=R(s)-C(s) E(s)=R(s)C(s)
可得:
C ( s ) = [ 1 + G r ( s ) ] G ( s ) 1 + G ( s ) R ( s ) C(s)=\frac{[1+G_r(s)]G(s)}{1+G(s)}R(s) C(s)=1+G(s)[1+Gr(s)]G(s)R(s)
如果选择前馈补偿装置传递函数为:
G r ( s ) = 1 G ( s ) G_r(s)=\frac{1}{G(s)} Gr(s)=G(s)1
则有:
C ( s ) = R ( s ) C(s)=R(s) C(s)=R(s)
即在上式成立的条件下,系统的输出量在任何时刻都可以完全无误地复现输入量,具有理想的时间响应特性;

同时有:
E ( s ) = [ 1 − G r ( s ) G ( s ) ] 1 + G ( s ) R ( s ) E(s)=\frac{[1-G_r(s)G(s)]}{1+G(s)}R(s) E(s)=1+G(s)[1Gr(s)G(s)]R(s)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值