fanuc机床增加PMC报警

想给FANUC机床自定义一个报警,步骤如下

界面先按到PMC CONFIG界面

需要在“设置”中打开编辑权限,不然编辑报警文本那个界面不会显示“编辑”按钮

再到MESAGE界面

按“OPRT"按钮

按”编辑"

会询问是不是停止PMC程序,选择是

填信息的时候根据自己的需求填写报警号,如下图

增加完报警信息后,如果没有触发报警信息,可能缺少一个指令,如下图

这个指令的作用就是在屏幕上显示报警信息。

参考资源链接:[深度学习绘图模板ML Visuals:轻松绘制模型图](https://wenku.csdn.net/doc/6se9jxh5o8?utm_source=wenku_answer2doc_content) 在深度学习中,Transformer模型因其对序列数据处理的高效性而被广泛应用。模型的核心之一就是Multi-Head Attention机制,它允许模型在不同表示子空间中并行地关注输入的不同位置。而Positional Encoding则是为了解决自注意力机制无法捕捉输入序列的顺序信息的问题。要在演示或文档中准确展示这些机制,深度学习绘图模板《深度学习绘图模板ML Visuals:轻松绘制模型图》是一个非常有用的资源。它提供了丰富的图形元素,可以帮助用户清晰地描绘出Multi-Head Attention是如何在多个头之间分割输入,并通过线性层和softmax函数计算得到最终的注意力权重。对于Positional Encoding,模板中包含的图表能够展示如何将位置信息嵌入到输入表示中,从而使模型能够理解和利用序列中元素的顺序。具体来说,您可以使用模板中的图表来表示Multi-Head Attention如何对query、key和value向量进行矩阵操作,以及Positional Encoding如何为每个位置生成唯一的编码向量,将这些编码与输入相加,最后通过模型的其他部分进行处理。通过这些可视化工具,即便是复杂的模型结构和工作机制也能变得易于理解和沟通。 参考资源链接:[深度学习绘图模板ML Visuals:轻松绘制模型图](https://wenku.csdn.net/doc/6se9jxh5o8?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微信13758104650

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值