「自控原理」1.2 复变知识回顾

本节介绍复变函数的基础知识和常用的拉氏变换及其反变换


复数有关概念

复数、复函数

复数: s = σ + j ω s=\sigma+j\omega s=σ+
复函数: F ( s ) = F x ( s ) + j F y ( s ) F(s)=F_x(s)+jF_y(s) F(s)=Fx(s)+jFy(s)

模、相角

模: ∣ F ( s ) ∣ = F x 2 + F y 2 \lvert F(s)\rvert=\sqrt{F_x^2+F_y^2} F(s)∣=Fx2+Fy2
相角: ∠ F ( s ) = arctan ⁡ F y F x \angle F(s)=\arctan{\frac {F_y}{F_x}} F(s)=arctanFxFy

共轭

共轭复数: F ( s ) ‾ = F x − j F y \overline{F(s)}=F_x-jF_y F(s)=FxjFy

解析

若F(s)在s点的各阶导数都存在,则F(s)在s点解析

拉氏变换

注:拉普拉斯变换

定义

L [ f ( t ) ] = F ( s ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t \mathscr{L}[f(t)]=F(s)=\int_{0}^{\infty} f(t)\cdot{e^{-st}}dt L[f(t)]=F(s)=0f(t)estdt

常见函数的拉氏变换

注:默认函数在t<0部分为0

阶跃函数

f ( t ) = { 0 t < 0 1 t ≥ 0 f(t)=\left\{ \begin{aligned} 0 & & t<0 \\ 1 & &t\geq0 \\ \end{aligned} \right. f(t)={01t<0t0
L [ 1 ( t ) ] = 1 s \mathscr{L}[1(t)]=\frac{1}{s} L[1(t)]=s1

指数函数

f ( t ) = e − a t f(t)=e^{-at} f(t)=eat
L [ f ( t ) ] = 1 s + a \mathscr{L}[f(t)]=\frac{1}{s+a} L[f(t)]=s+a1

正弦函数

f ( t ) = { 0 t < 0 s i n ω t t ≥ 0 f(t)=\left\{ \begin{aligned} &0 &t<0 \\ &sin\omega t & t\geq 0 \end{aligned} \right. f(t)={0sinωtt<0t0
L [ f ( t ) ] = ω s 2 + ω 2 \mathscr{L}[f(t)]=\frac{\omega}{s^2+\omega^2} L[f(t)]=s2+ω2ω

表格展示

常见函数 f ( t ) F ( s ) 单位脉冲 δ ( t ) 1 单位阶跃 1 ( t ) 1 s 单位斜坡 t 1 s 2 单位加速度 t 2 2 1 s 3 指数函数 e − a t 1 s + a 正弦函数 sin ⁡ ω t ω s 2 + ω 2 余弦函数 cos ⁡ ω t s s 2 + ω 2 \begin{aligned} &常见函数&&f(t)&&F(s)\\\\ &单位脉冲&&\delta(t)&&1\\\\ &单位阶跃&&1(t)&&\frac{1}{s}\\\\ &单位斜坡&&t&&\frac{1}{s^2}\\\\ &单位加速度&&\frac{t^2}{2}&&\frac{1}{s^3}\\\\ &指数函数&&e^{-at}&&\frac{1}{s+a}\\\\ &正弦函数&&\sin\omega t&& \frac{\omega}{s^2+\omega^2}\\\\ &余弦函数&&\cos\omega t&& \frac{s}{s^2+\omega^2} \end{aligned} 常见函数单位脉冲单位阶跃单位斜坡单位加速度指数函数正弦函数余弦函数f(t)δ(t)1(t)t2t2eatsinωtcosωtF(s)1s1s21s31s+a1s2+ω2ωs2+ω2s

拉氏变换的几个重要定理

线性性质

L [ a f 1 ( t ) ± b f 2 ( t ) ] = a F 1 ( s ) ± b F 2 ( s ) \mathscr{L}[af_1(t)\pm{bf_2(t)]=aF_1(s)\pm bF_2(s)} L[af1(t)±bf2(t)]=aF1(s)±bF2(s)

微分定理

L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) \mathscr{L}[f'(t)]=s\cdot{F(s)}-f(0) L[f(t)]=sF(s)f(0)

积分定理

L [ ∫ f ( t ) d t ] = 1 s + 1 s f ( − 1 ) ( 0 ) ] \mathscr{L}[\int{f(t)dt}]=\frac{1}{s}+\frac{1}{s}f^{(-1)}(0)] L[f(t)dt]=s1+s1f(1)(0)]

实位移定理

L [ f ( t − τ 0 ] = e − τ 0 ⋅ s ⋅ F ( s ) \mathscr{L}[f(t-\tau_0]=e^{-\tau_0\cdot s}\cdot F(s) L[f(tτ0]=eτ0sF(s)

复位移定理

L [ e A ⋅ t f ( t ) ] = F ( s − A ) \mathscr{L}[e^{A\cdot t}f(t)]=F(s-A) L[eAtf(t)]=F(sA)

初值定理

lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) \lim\limits_{t \rightarrow 0}f(t)=\lim\limits_{s \rightarrow\infty}s\cdot F(s) t0limf(t)=slimsF(s)

终值定理

lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \lim\limits_{t \rightarrow \infty}f(t)=\lim\limits_{s \rightarrow 0}s\cdot F(s) tlimf(t)=s0limsF(s)

拉氏反变换

反演公式

f ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) ⋅ e t s d s f(t)=\frac{1}{2\pi j}\int_{\sigma -j\infty}^{\sigma+j\infty}F(s)\cdot e^{ts}ds f(t)=2πj1σjσ+jF(s)etsds

查表法

也叫做分解部分分式法。也就是将原函数分解为几个简单函数的额和差形式,再利用基本函数的拉氏变换进行反变换。
在这里插入图片描述
这里使用了留数法分解分式。当然也可以采用试凑法或者系数比较法(也就是硬做和待定系数法)但是这里就只讲解比较普遍的留数法了。

留数法分解部分分式

一般有
F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + … + b 0 a n s n + a n − 1 s n − 1 + … + a 0    ( n > m ) F(s)=\frac{B(s)}{A(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+…+b_0}{a_ns^n+a_{n-1}s^{n-1}+…+a_0}\ \ (n\gt m) F(s)=A(s)B(s)=ansn+an1sn1++a0bmsm+bm1sm1++b0  (n>m)

A ( s ) = a n s n + a n − 1 s n − 1 + … + a 0           = ( s − p 1 ) ( s − p 2 ) … ( s − p n ) A(s)=a_ns^n+a_{n-1}s^{n-1}+…+a_0\\ \ \ \ \ \ \ \ \ \ =(s-p_1)(s-p_2)…(s-p_n) A(s)=ansn+an1sn1++a0         =(sp1)(sp2)spn

当A(s)=0无重根时

F ( s ) = C 1 s − p 1 + C 2 s − p 2 + … + C n s − p n = ∑ i = 1 n C i s − p i F(s)=\frac{C_1}{s-p_1}+\frac{C_2}{s-p_2}+…+\frac{C_n}{s-p_n}= \sum\limits_{i=1}^{n}\frac{C_i}{s-p_i} F(s)=sp1C1+sp2C2++spnCn=i=1nspiCi
{ C i = lim ⁡ s → p i ( s − p i ) ⋅ F ( s ) C i = B ( s ) A ′ ( s ) ∣ s = p i \left\{ \begin{aligned} &C_i=\lim\limits_{s\rightarrow p_i}(s-p_i)\cdot F(s)\\\\ &C_i=\frac{B(s)}{A'(s)}\rvert _{s=p_i} \end{aligned} \right. Ci=spilim(spi)F(s)Ci=A(s)B(s)s=pi
以上两种方式计算得到的结果是一样的,可以选择自己喜欢的一个用

当A(s)=0有重根时

设p1为m重根,其余为单根
F ( s ) = C m ( s − p 1 ) m + C m − 1 ( s − p 2 ) m − 1 + … + C 1 s − p 1 + C m + 1 s − p m + 1 + … + C n s − p n F(s)=\frac{C_m}{(s-p_1)^m}+\frac{C_{m-1}}{(s-p_2)^{m-1}}+…+\frac{C_1}{s-p_1}+\frac{C_{m+1}}{s-p_{m+1}}+…+\frac{C_n}{s-p_n} F(s)=(sp1)mCm+(sp2)m1Cm1++sp1C1+spm+1Cm+1++spnCn

{ C m = lim ⁡ s → p 1 ( s − p 1 ) m ⋅ F ( s ) C m − 1 = 1 1 ! lim ⁡ s → p 1 d d s [ ( s − p 1 ) m ⋅ F ( s ) ] … C m − j = 1 j ! lim ⁡ s → p 1 d ( j ) d s j [ ( s − p 1 ) m ⋅ F ( s ) ] … C 1 = 1 ( m − 1 ) ! lim ⁡ s → p 1 d ( m − 1 ) d s m − 1 [ ( s − p 1 ) m ⋅ F ( s ) ] \left\{ \begin{aligned} &C_m=\lim\limits_{s \rightarrow p_1}(s-p_1)^m\cdot F(s)\\ &C_{m-1}=\frac{1}{1!}\lim\limits_{s \rightarrow p_1}\frac{d}{ds}[(s-p_1)^m\cdot F(s)]\\ &…\\ &C_{m-j}=\frac{1}{j!}\lim\limits_{s \rightarrow p_1}\frac{d^{(j)}}{ds^j}[(s-p_1)^m\cdot F(s)]\\ &…\\ &C_1=\frac{1}{(m-1)!}\lim\limits_{s \rightarrow p_1}\frac{d^{(m-1)}}{ds^{m-1}}[(s-p_1)^m\cdot F(s)]\\ \end{aligned} \right. Cm=sp1lim(sp1)mF(s)Cm1=1!1sp1limdsd[(sp1)mF(s)]Cmj=j!1sp1limdsjd(j)[(sp1)mF(s)]C1=(m1)!1sp1limdsm1d(m1)[(sp1)mF(s)]

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 西安工业大学自控原理课件doc包含了自控原理课程的全套教材资料,内容涵盖了自控系统的基本原理与应用、传感器、电路和控制器等各方面的内容,是学生学习该课程必备的资料。 该课件以简明易懂的方式,详细讲解了自控系统的运作原理和设计方法,通过生动的图表和实例,让学生更加深入地理解了自控系统的工作原理,培养了学生分析和解决实际问题的能力。 此外,该课件在提高学生学习效率的同时,也充分考虑了学生的实际需求。在课件中,丰富的练习题和案例分析,使学生能够熟练掌握自控系统的设计和运作方法,并有助于学生在实际工程项目中的应用。 总而言之,西安工业大学自控原理课件doc,对于自控原理课程的教学与学习,具有重要的应用和价值,将为学生的工程实践提供有力的支持。 ### 回答2: 西工大自控原理课件doc是一份非常有价值的文件。该文件详细介绍了自控原理的相关知识,包括控制系统的基本概念、控制系统的结构、传感器、执行器等。 通过该文件的学习,我们可以更好地了解自控原理的重要性,并学习到如何设计和实现高质量的自控系统。此外,该文件还提供了大量的例子和实际应用,可以帮助我们更好地理解和掌握这些知识。 需要注意的是,该文件的内容相对比较深入和高级,适合有一定基础的自控专业学生和研究人员学习。如果没有相关背景知识,可能需要花费更多的时间和努力来理解和掌握其中的知识。 总的来说,西工大自控原理课件doc是一份极为有用的学习资料。通过认真阅读和学习,可以让我们更好地了解和应用自控原理的相关知识。 ### 回答3: 西安工业大学自控原理课件doc是一份非常重要的文档,它对自动控制原理的学习提供了很大的帮助和指导。该课件对自控原理涉及的各个方面进行了详细的介绍,包括反馈控制系统、PID控制系统、电流/电压反馈等基本原理与算法,使得学习者可以更加深入地了解自控原理的核心思想。 在该课件中,丰富的实例和图表展示了不同的控制系统应用,如温度控制、汽车转向控制、飞机姿态控制等,这些实例让学生更加了解到控制系统的实际应用,并且让学生感觉到自己正在学习一种非常实用的工程学科。 同时,该文档还提供了一些方法和技巧,让学生可以更好地掌握自控原理的基本概念和相关理论。例如,数据分析技巧、实验设计建模技巧等,这些技巧还可以在其他相关课程的学习和实践中得到应用。 总之,西安工业大学自控原理课件doc对该学科的学习非常有帮助。它不仅提供了必要的理论知识,而且还让学生通过实例来更好地理解和应用自控原理的思想。该课件的全面性和细致性在教学中起到了重要的作用,值得广大学生学习和借鉴。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值