【自动控制原理】-奈氏判据

本文详细介绍了奈氏判据的基础理论及其应用,包括频率特性的四种表达方式、频域稳定判据的特点,并通过实例深入探讨了奈氏判据的具体使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 截止频率是-3dB的频率,两个截止频率之间的频段是带宽
  • 0dB处对应的是裕度,是分析稳定性用的。

频率特性和频域稳定判据

频率特性的4种表达形式:
在这里插入图片描述

  • 频域稳定判据分类:奈氏判据稳定判据和对数频率稳定判据
  • 频域稳定判据特点:根据开环系统频率特性曲线判定闭环系统的稳定性

https://zhuanlan.zhihu.com/p/33007435
https://zhuanlan.zhihu.com/p/400862744

1. 奈氏判据的数学基础

复变函数中的幅角原理是奈氏判据的数学基础,另外,稳定性判定还需选择辅助函数闭合曲线

(1) 幅角原理

顺序s平面F(s)平面
1任意一闭合曲线 Γ \it\Gamma Γ,不经过零点和极点对应闭合曲线 Γ F \it\Gamma_F ΓF
2令s从 Γ \it\Gamma Γ上的A点起,顺时针转一圈,回到A点对应 从 Γ F \it\Gamma_F ΓF的F(A)点开始

在这里插入图片描述

  • 幅角原理:设在 s 平面中,闭合曲线 Γ \it\Gamma Γ 包围函数 F(s)的 Z 个零点和 P 个极点,则 s 沿 Γ \it\Gamma Γ 顺时针运动一周时,在 F(s)平面上,闭合曲线 Γ F \it\Gamma_F ΓF 包围原点的圈数 为
    R = P − Z R=P−Z R=PZ
含义
R<0 Γ F \it\Gamma_F ΓF顺时针包围F(s)平面的原点
R>0 Γ F \it\Gamma_F ΓF逆时针包围F(s)平面的原点
R=0不包围 F(s)平面的原点。
  • 例子

(2) F(s)的选择

F(s)=1+G(s)H(s)

F(s)系统
零点闭环极点
极点开环极点

(3) s平面闭合曲线 Γ \it\Gamma Γ 的选择

系统闭环稳定的条件:系统闭环传函在s的右半平面(图5-28的图(a))无极点 ->
也就是F(s)=1+G(s)H(s)在s的右半平面无零点->
也就是 Γ \it\Gamma Γ 在右平面无限大时,都不包含零点。->
无限大,就是图5-30(a),但是需要考虑虚轴上的零极点(为什么书上只考虑了虚轴上的极点了呢?而不考虑虚轴上的零点,难道是因为零点不可能在虚轴上吗?
为了考虑闭合曲线 Γ \it\Gamma Γ 应不通过 F(s)的零极点的要求:

  1. F(s)无虚轴极点( F(s)的极点和G(s)H(s)的极点一模一样,因此也可以写为G(s)H(s)无虚轴极点
  2. G(s)H(s)有虚轴极点
    在这里插入图片描述

(4)G(s)H(s)闭合曲线的绘制

由上文的(3)可知,s平面中, Γ \it\Gamma Γ 关于实轴对称。因此, Γ G H \it\Gamma_{GH} ΓGH 也关于实轴对称。因此,只需要画出 Γ G H \it\Gamma_{GH} ΓGH 虚轴及以上的部分就行。
一下就介绍如何将s平面映射到F(s)平面:

  1. G(s)H(s)无虚轴极点
s平面F(s)平面
虚轴部分(也就是s=jω,ω∈[0,+∞))对应开环幅相特性曲线
半圆部分(也就是 s = ∞ e j θ s=∞e^{jθ} s=ejθ,θ∈[0°,+90°])1. n>m时,对应圆点;2.n=m时,对应点(K*, j0)
  1. G(s)H(s)有虚轴极点

2. 奈氏判据

系统稳定的条件:

  1. F(s)=1+G(s)H(s)在s的右半平面(图5-28的图(a))无零点。
    也就是说 Γ \it\Gamma Γ 需要只包围极点,不包围零点。
  2. 那么就是s平面中, Γ \it\Gamma Γ 包围F(s)的极点数P= F(s)平面的F(s)函数,就是 Γ F \it\Gamma_F ΓF 逆时针包围原点的圈数R (R=P)
  3. 那么对应开环传函的话:s平面中, Γ \it\Gamma Γ 包围F(s)的极点数P= F(s)平面的G(s)H(s)函数,就是 Γ G H \it\Gamma_{GH} ΓGH 逆时针包围(-1,j0)的圈数R (R=P)

例5-8的拓展

根据例5-10题目中已知的知识

  1. 开环系统稳定,P=0
  2. 由开环幅相特性曲线知ν =0,不需补作虚直线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值