论文阅读笔记:多模态的融合数据和方法

论文题目: Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model
论文链接: https://www.sciencedirect.com/science/article/pii/S0924271621001362?dgcid=rss_sd_all.
代码链接:https://github.com/danfenghong/ISPRS_S2FL
引用方式:

@article{HONG202168,
title = {Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {178},
pages = {68-80},
year = {2021},
issn = {0924-2716},
doi = {https://doi.org/10.1016/j.isprsjprs.2021.05.011},
url = {https://www.sciencedirect.com/science/article/pii/S0924271621001362},
author = {Danfeng Hong and Jingliang Hu and Jing Yao and Jocelyn Chanussot and Xiao Xiang Zhu},
}

一、背景:融合方法

① 特征级联

② 共有特征和特有特征的分离处理

二、本文的方法

本文使用第二种融合方法

三、数据

①:HS-MS Houston2013 data
在这里插入图片描述
②:HS-SAR Berlin data
在这里插入图片描述
③:HS-SAR-DSM augsburg data
在这里插入图片描述
下载链接:https://pan.baidu.com/s/14OQW-9EpGRODOEnWfBXnag
提取码: ekqq

注:本文仅用来做学习笔记,如有侵权,请联系mengrumalearn@163.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ru-willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值