最小二乘原理几何意义及详细公式推导

最小二乘

最小二乘原理是解决当误差等因素存在时,向量b不在设计矩阵A的列项量空间中时,如何求得最优解的方法。这里依然以图片的形式给出,因为在word中编辑好以后在以图片的形式给出,能更好的保证公式推导的流畅性,更容易理解。在后续内容中从列向量空间,向量的线性组合,投影矩阵的角度给出最小二乘原理的几何解释及详细的公式推导,欢迎大家批评指正。![在这里插入图片描述](https://img-blog.csdnimg.cn/e637d85818dd4667adb2160b5997606a.jpeg#pic_center
在这里插入图片描述在这里插入图片描述

加权最小二乘

在上一节最小二乘原理的基础上进一步引入加权最小二乘。
在这里插入图片描述在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
几何分布是描述在一系列独立的伯努利试验中,首次成功所需的试验次数的概率分布。假设每次试验成功的概率为p,则几何分布的概率质量函数可以表示为: P(X=k) = (1-p)^(k-1) * p 其中,X表示首次成功所需的试验次数,k表示试验次数,p表示每次试验成功的概率。 要推导几何分布的期望公式,我们可以使用概率质量函数的定义。期望值E(X)可以表示为: E(X) = Σ(k * P(X=k)) 我们将概率质量函数代入上式,得到: E(X) = Σ(k * (1-p)^(k-1) * p) 为了求解这个无穷级数,我们可以对其进行变换。首先,我们将k * (1-p)^(k-1)拆分为两部分: k * (1-p)^(k-1) = (1-p)^(k-1) + (k-1) * (1-p)^(k-1) 然后,我们可以将无穷级数分为两个部分: 第一部分:Σ((1-p)^(k-1) * p) = p * Σ((1-p)^(k-1)) 第二部分:Σ((k-1) * (1-p)^(k-1) * p) = p * Σ((k-1) * (1-p)^(k-1)) 对于第一部分,我们可以使用几何级数的公式进行求解: Σ((1-p)^(k-1)) = 1 / (1 - (1-p)) = 1 / p 对于第二部分,我们可以进行变换: Σ((k-1) * (1-p)^(k-1)) = Σ(k * (1-p)^(k-1)) - Σ((1-p)^(k-1)) 根据之前的推导,第一部分可以表示为1/p,第二部分可以表示为E(X)。因此,我们可以得到: E(X) = p * (1/p - E(X)) 将E(X)移到等式左边,得到: E(X) + p * E(X) = 1/p 合并同类项,得到: (1 + p) * E(X) = 1/p 最后,将等式两边除以(1 + p),得到几何分布的期望公式: E(X) = (1 + p) / p 这就是几何分布的期望公式推导过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值