最小二乘原理几何意义及详细公式推导

本文深入探讨了最小二乘法的基本原理,特别是在误差存在时寻找最佳解的方法。通过列向量空间、向量的线性组合和投影矩阵的几何解释,详细阐述了最小二乘的公式推导。此外,还介绍了加权最小二乘的概念,它是对基本最小二乘法的进一步扩展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小二乘

最小二乘原理是解决当误差等因素存在时,向量b不在设计矩阵A的列项量空间中时,如何求得最优解的方法。这里依然以图片的形式给出,因为在word中编辑好以后在以图片的形式给出,能更好的保证公式推导的流畅性,更容易理解。在后续内容中从列向量空间,向量的线性组合,投影矩阵的角度给出最小二乘原理的几何解释及详细的公式推导,欢迎大家批评指正。![在这里插入图片描述](https://img-blog.csdnimg.cn/e637d85818dd4667adb2160b5997606a.jpeg#pic_center
在这里插入图片描述在这里插入图片描述

加权最小二乘

在上一节最小二乘原理的基础上进一步引入加权最小二乘。
在这里插入图片描述在这里插入图片描述

<think>嗯,用户想了解最小二乘法的直线拟合算法原理。我得先回忆一下相关知识。最小二乘法应该是用来找到数据的最佳拟合直线,使得所有数据点到这条直线的垂直距离平方和最小。对吧?那具体是怎么推导的呢? 首先,我记得直线方程通常是y = kx + b,其中k是斜率,b是截距。目标是最小化误差平方和,也就是Σ(y_i - (kx_i + b))²。这个表达式要对k和b分别求偏导,然后令导数为零,解方程组得到k和b的值。对吧? 不过具体步骤可能有点模糊。比如,怎么展开这个误差函数,求导后得到什么样的方程组?可能涉及到对k和b的偏导数分别处理。然后联立方程解出k和b的表达式。比如,对k求偏导得到Σ2(y_i - kx_i - b)(-x_i) = 0,对b求偏导则是Σ2(y_i - kx_i - b)(-1) = 0。整理这两个方程应该能得到正规方程组。 然后可能需要用线性代数的方法,把方程组写成矩阵形式,比如Ax = B,然后求解x。这里的x应该就是k和b组成的向量。这样可能更高效,特别是在编程实现的时候,比如用Matlab的矩阵运算。 另外,用户提供的引用里提到解方程组得到k和b的表达式,这可能对应到正规方程的解。例如,通过代数运算,k的表达式可能涉及协方差和方差,而b则是均值点减去k乘以x的均值。不过具体的公式可能需要再查证一下,确保正确性。 还要注意,最小二乘法的假设是误差在y方向上,且满足高斯-马尔可夫条件,比如误差的均值为零,同方差,且不相关。这可能在某些情况下不适用,比如有异方差性时,这时候可能需要加权最小二乘法或者其他方法。 在应用方面,最小二乘直线拟合常用于数据趋势分析,回归分析,工程上的校准曲线等。比如在实验数据中,找出变量之间的线性关系,进行预测或者控制。 可能用户还想知道如何评估拟合的好坏,这时候可以提到残差分析,R平方值等指标。不过用户的问题主要集中在算法原理,所以这部分可能暂时不需要深入,但相关的后续问题可能会涉及。 最后,确保回答的结构清晰,先讲原理,再推导过程,可能给出公式,然后简要提到实现步骤,如引用中的Matlab代码。同时生成的相关问题需要考虑用户可能进一步想了解的内容,比如优缺点、实现步骤、数学推导细节等。</think>### 最小二乘法直线拟合算法原理介绍 #### 1. 问题定义 给定一组二维数据点$(x_i, y_i)$,需找到一条直线$y = kx + b$,使得所有点到直线的**垂直误差平方和最小**,即最小化目标函数: $$E = \sum_{i=1}^n (y_i - (kx_i + b))^2$$ #### 2. 数学推导 **步骤1:构建目标函数** 将误差平方和展开: $$E = \sum_{i=1}^n (y_i - kx_i - b)^2$$ **步骤2:对参数求偏导** 分别对$k$和$b$求偏导并令其为零,得到方程组: $$ \begin{cases} \frac{\partial E}{\partial k} = -2\sum (y_i - kx_i - b)x_i = 0 \\ \frac{\partial E}{\partial b} = -2\sum (y_i - kx_i - b) = 0 \end{cases} $$ **步骤3:整理方程组** 将方程组化简为: $$ \begin{cases} k\sum x_i^2 + b\sum x_i = \sum x_i y_i \\ k\sum x_i + bn = \sum y_i \end{cases} $$ **步骤4:解线性方程组** 通过代数消元法或矩阵运算求解$k$和$b$,最终得到: $$ k = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}, \quad b = \frac{\sum y_i - k\sum x_i}{n} $$ #### 3. 几何意义 最小二乘法通过调整$k$和$b$,使所有数据点到直线的**垂直距离平方和最小**,反映了数据在统计学中的线性趋势[^1]。 #### 4. 实现步骤 1. 计算$\sum x_i$, $\sum y_i$, $\sum x_i y_i$, $\sum x_i^2$ 2. 代入公式计算$k$和$b$ 3. 验证拟合效果(如计算残差) ```matlab % MATLAB示例代码 x = [1,2,3,4,5]; y = [2,3,5,6,8]; n = length(x); sum_x = sum(x); sum_y = sum(y); sum_xy = sum(x.*y); sum_x2 = sum(x.^2); k = (n*sum_xy - sum_x*sum_y)/(n*sum_x2 - sum_x^2); b = (sum_y - k*sum_x)/n; ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值