矩阵范数学习

矩阵范数

定义

A ∈ C m × n A\in \mathbb{C}^{m\times n} ACm×n,按某一法则在 C m × n \mathbb{C}^{m\times n} Cm×n上规定 A A A的一个实值函数,记作 ∥ A ∥ \Vert A \Vert A,它满足下面4个条件:
(1)非负性:如果 A ≠ 0 A\neq 0 A=0,则 ∥ A ∥ > 0 \Vert A \Vert>0 A>0;如果 A = 0 A=0 A=0,则 ∥ A ∥ = 0 \Vert A \Vert=0 A=0
(2)齐次性:对于任意的 k ∈ C , ∥ k A ∥ = ∣ k ∣ ∥ A ∥ k \in \mathbb{C}, \Vert kA \Vert=\left| k \right| \Vert A \Vert kC,kA=kA
(3)三角不等式: ∀ A , B ∈ C m × n , ∥ A + B ∥ ≤ ∥ A ∥ ∥ B ∥ \forall A,B \in \mathbb{C}^{m\times n}, \Vert A+B \Vert \le \Vert A \Vert \Vert B \Vert A,BCm×n,A+BAB
(4)次乘性:当矩阵乘积 A B AB AB有意义时,若有
∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ \Vert AB \Vert \le \Vert A \Vert \Vert B \Vert ABAB

则称 ∥ A ∥ \Vert A \Vert A为矩阵范数

(如果次乘性的不等号反向,则幂等矩阵的矩阵范数为0,与非负性矛盾;
次乘性保证了矩阵幂级数的敛散性的“合理性”)

常用的矩阵范数

A ∈ C m × n A\in C^{m\times n} ACm×n
∥ A ∥ m 1 = ∑ i = 1 m ∑ i = 1 n ∣ a i j ∣ ∥ A ∥ m ∞ = n ⋅ max ⁡ i , j ∣ a i j ∣ ∥ A ∥ F = ∥ A ∥ m 2 = ( ∑ i = 1 m ∑ i = 1 n ∣ a i j 2 ∣ 2 ) 1 2 \Vert A \Vert_{m_1}=\sum_{i=1}^{m}\sum_{i=1}^{n}\left|a_{ij}\right|\\ \Vert A \Vert_{m_\infty}=n\cdot \max \limits_{i,j}\left|a_{ij}\right|\\ \Vert A \Vert_F=\Vert A \Vert_{m_2}=(\sum_{i=1}^{m}\sum_{i=1}^{n}\left| a_{ij}^2\right|^2)^{\frac{1}{2}} Am1=i=1mi=1naijAm=ni,jmaxaijAF=Am2=(i=1mi=1naij22)21

等价

A ∈ C m × n A\in \mathbb{C}^{m\times n} ACm×n, ∥ A ∥ \Vert A \Vert A C m × n \mathbb{C}^{m\times n} Cm×n上的矩阵范数,则 C m × n \mathbb{C}^{m\times n} Cm×n上的任意两个矩阵范数等价

相容

A ∈ C m × n , x ∈ C n A\in \mathbb{C}^{m\times n},x \in \mathbb{C}^{n} ACm×n,xCn,如果取定的向量范数 ∥ x ∥ \Vert x \Vert x和矩阵范数 ∥ A ∥ \Vert A\Vert A满足
∥ A x ∥ ≤ ∥ A ∥ ∥ x ∥ \Vert Ax \Vert \le \Vert A \Vert\Vert x \Vert AxAx
则称矩阵范数 ∥ A ∥ \Vert A \Vert A与向量范数 ∥ x ∥ \Vert x \Vert x相容

算子范数

A ∈ C m × n , x = ( x 1 , ⋯   , x n ) T ∈ C n A\in \mathbb{C}^{m\times n},x=(x_1,\cdots,x_n)^T \in \mathbb{C}^{n} ACm×n,x=(x1,,xn)TCn,且在 C n \mathbb{C}^{n} Cn中已规定了向量的范数(即 C n \mathbb{C}^{n} Cn n n n维赋范线性空间),定义
∥ A ∥ = sup ⁡ ∥ x ∥ ≠ 0 ∥ A x ∥ ∥ x ∥ = max ⁡ ∥ x ∥ = 1 ∥ A x ∥ \Vert A \Vert = \sup \limits_{\Vert x \Vert \neq 0} \frac{\Vert Ax \Vert}{\Vert x \Vert}=\max \limits_{\Vert x \Vert =1}\Vert Ax \Vert A=x=0supxAx=x=1maxAx
则上式定义了一个与向量范数 ∥ ⋅ ∥ \Vert \cdot \Vert 相容的矩阵范数,称为向量范数 ∥ ⋅ ∥ \Vert \cdot \Vert 诱导的矩阵范数或算子范数

证明:
需要证明这个矩阵范数满足4条性质以及相溶性

相溶性:
y ≠ 0 , x = 1 ∥ y ∥ y , ∥ x ∥ = 1 y\neq 0,x=\frac{1}{\Vert y \Vert} y,\Vert x \Vert =1 y=0,x=y1y,x=1
∥ A y ∥ = ∥ A ( ∥ y ∥ ) x ∥ = ∥ y ∥ ∥ A x ∥ ≤ ∥ y ∥ ∥ A ∥ = ∥ A ∥ ∥ y ∥ \begin{aligned} &\quad \Vert Ay \Vert \\ &= \Vert A(\Vert y \Vert) x \Vert\\ &= \Vert y \Vert \Vert Ax \Vert\\ &\le \Vert y \Vert \Vert A \Vert\\ &= \Vert A \Vert \Vert y \Vert \end{aligned} Ay=A(y)x=yAxyA=Ay
非负性:
A ≠ 0 A\neq 0 A=0,则可以找到 ∥ x ∥ = 1 \Vert x \Vert=1 x=1的向量 x x x,使得 A x ≠ 0 Ax \neq 0 Ax=0,从而 ∥ A x ∥ ≠ 0 \Vert Ax \Vert \neq 0 Ax=0
所以 ∥ A ∥ = max ⁡ ∥ x ∥ = 1 ∥ A x ∥ > 0 \Vert A \Vert=\max \limits_{\Vert x \Vert=1} \Vert Ax \Vert>0 A=x=1maxAx>0
A = 0 A=0 A=0,一定有 ∥ A ∥ = max ⁡ ∥ x ∥ = 1 ∥ 0 x ∥ = 0 \Vert A \Vert=\max \limits_{\Vert x \Vert=1} \Vert 0x \Vert=0 A=x=1max0x=0

齐次性:
对于 ∀ k ∈ C \forall k \in \mathbb{C} kC,有
∥ k A ∥ = max ⁡ ∥ x ∥ = 1 ∥ k A x ∥ = ∣ k ∣ max ⁡ ∥ x ∥ = 1 ∥ A x ∥ = ∣ k ∣ ∥ A ∥ \Vert kA \Vert=\max \limits_{\Vert x \Vert=1} \Vert kAx \Vert = \left|k \right| \max \limits_{\Vert x \Vert=1} \Vert Ax \Vert=\left|k \right| \Vert A \Vert kA=x=1maxkAx=kx=1maxAx=kA

三角不等式:
对于矩阵 A + B A+B A+B,可以找到向量 x 0 x_0 x0,使得
∥ A + B ∥ = ∥ ( A + B ) x 0 ∥ ( ∥ x 0 ∥ = 1 ) \Vert A+B \Vert= \Vert (A+B)x_0 \Vert \quad (\Vert x_0 \Vert=1) A+B=(A+B)x0(x0=1)
于是
∥ A + B ∥ = ∥ ( A + B ) x 0 ∥ = ∥ A x 0 + B x 0 ∥ ≤ ∥ A x 0 ∥ + ∥ B x 0 ∥ ≤ ∥ A ∥ ∥ x 0 ∥ + ∥ B ∥ ∥ x 0 ∥ = ∥ A ∥ + ∥ B ∥ \begin{aligned} &\quad \Vert A+B \Vert\\ &= \Vert (A+B)x_0 \Vert\\ &=\Vert Ax_0+Bx_0 \Vert\\ &\le \Vert Ax_0 \Vert+ \Vert Bx_0 \Vert\\ &\le \Vert A \Vert \Vert x_0 \Vert+ \Vert B \Vert \Vert x_0 \Vert\\ &= \Vert A \Vert + \Vert B \Vert \end{aligned} A+B=(A+B)x0=Ax0+Bx0Ax0+Bx0Ax0+Bx0=A+B

次乘性:
对于矩阵 A B AB AB,可以找到向量 x 0 x_0 x0,使得
∥ A B x 0 ∥ = ∥ A B ∥ ( ∥ x 0 ∥ = 1 ) \Vert ABx_0 \Vert = \Vert AB \Vert \quad (\Vert x_0 \Vert=1) ABx0=AB(x0=1)
于是
∥ A B ∥ = ∥ A B x 0 ∥ = ∥ A ( B x 0 ) ∥ ≤ ∥ A ∥ ∥ B x 0 ∥ ≤ ∥ A ∥ ∥ B ∥ ∥ x 0 ∥ = ∥ A ∥ ∥ B ∥ \begin{aligned} &\quad \Vert AB \Vert\\ &= \Vert ABx_0 \Vert\\ &=\Vert A(Bx_0) \Vert\\ &\le \Vert A \Vert \Vert Bx_0 \Vert\\ &\le \Vert A \Vert \Vert B \Vert \Vert x_0\Vert\\ &= \Vert A \Vert \Vert B \Vert \end{aligned} AB=ABx0=A(Bx0)ABx0ABx0=AB
证毕

常见的算子范数

A ∈ C m × n , x ∈ C n A\in \mathbb{C}^{m\times n},x\in \mathbb{C}^{n} ACm×n,xCn,则从属于向量 x x x的三种范数 ∥ x ∥ 1 , ∥ x ∥ 2 , ∥ x ∥ ∞ \Vert x \Vert_1,\Vert x \Vert_2 , \Vert x \Vert_\infty x1,x2,x的算子范数依次是
(1)
∥ A ∥ 1 = max ⁡ j ∑ i = 1 m ∣ a i j ∣ \Vert A \Vert_1=\max \limits_{j} \sum_{i=1}^{m} \left| a_{ij}\right| A1=jmaxi=1maij
称为列范数
(2)
∥ A ∥ 2 = λ max ⁡ ( A H A ) \Vert A \Vert_2 =\sqrt{\lambda_{\max}(A^HA)} A2=λmax(AHA)
称为谱范数
(3)
∥ A ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \Vert A \Vert_\infty =\max \limits_{i} \sum_{j=1}^{n}\left|a_{ij}\right| A=imaxj=1naij
称为行范数

证明:
(1)
对于任何非零向量 x x x,设 ∥ x ∥ 1 = 1 \Vert x \Vert_1 =1 x1=1,则
∥ A x ∥ 1 = ∑ i = 1 m ∣ ∑ j = 1 n a i j x j ∣ ≤ ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ ∣ x j ∣ = ∑ j = 1 n ∑ i = 1 m ∣ a i j ∣ ∣ x j ∣ = ∑ j = 1 n ( ∑ i = 1 m ∣ a i j ∣ ) ∣ x j ∣ ≤ max ⁡ j ∑ i = 1 m ∣ a i j ∣ ∑ j = 1 n ∣ x j ∣ = max ⁡ j ∑ i = 1 m ∣ a i j ∣ \begin{aligned} &\quad \Vert Ax \Vert_1\\ &=\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{ij} x_j\right|\\ &\le\sum_{i=1}^{m}\sum_{j=1}^{n}\left| a_{ij}\right|\left| x_j\right|\\ &=\sum_{j=1}^{n}\sum_{i=1}^{m}\left| a_{ij}\right|\left| x_j\right|\\ &=\sum_{j=1}^{n}(\sum_{i=1}^{m}\left| a_{ij}\right|)\left| x_j\right|\\ &\le \max\limits_{j}\sum_{i=1}^{m}\left| a_{ij}\right| \sum_{j=1}^{n}\left| x_j\right|\\ &=\max\limits_{j}\sum_{i=1}^{m}\left| a_{ij}\right| \end{aligned} Ax1=i=1mj=1naijxji=1mj=1naijxj=j=1ni=1maijxj=j=1n(i=1maij)xjjmaxi=1maijj=1nxj=jmaxi=1maij
所以
∥ A x ∥ 1 ≤ max ⁡ j ∑ i = 1 m ∣ a i j ∣ \quad \Vert Ax \Vert_1\le \max\limits_{j}\sum_{i=1}^{m}\left| a_{ij}\right| Ax1jmaxi=1maij
设在 j = j 0 j=j_0 j=j0时, ∑ i = 1 m ∣ a i j ∣ \sum_{i=1}^{m}\left|a_{ij}\right| i=1maij达到最大值,即
∑ i = 1 m ∣ a i j 0 ∣ = max ⁡ 1 ≤ j ≤ n ∑ i = 1 m ∣ a i j ∣ \sum_{i=1}^{m}\left|a_{ij_0}\right|=\max\limits_{1\le j \le n}\sum_{i=1}^{m}\left| a_{ij}\right| i=1maij0=1jnmaxi=1maij
去向量 x 0 = ( 0 , ⋯   , 0 , 1 , 0 , ⋯ 0 ) T x_0=(0,\cdots,0,1,0,\cdots 0)^T x0=(0,,0,1,0,0)T
其中第 j 0 j_0 j0个分量为 1 1 1,其余为 0 0 0,显然 ∥ x ∥ 1 = 1 \Vert x \Vert_1 =1 x1=1
∥ A x 0 ∥ 1 = ∑ i = 1 m ∣ ∑ j = 1 n a i j x j ∣ = ∑ i = 1 m ∣ a i j 0 ∣ = max ⁡ j ∑ i = 1 m ∣ a i j ∣ \Vert Ax_0 \Vert_1=\sum_{i=1}^{m}\left|\sum_{j=1}^{n}a_{ij}x_j\right|=\sum_{i=1}^{m}\left|a_{ij_0}\right|=\max\limits_{j}\sum_{i=1}^{m}\left|a_{ij}\right| Ax01=i=1mj=1naijxj=i=1maij0=jmaxi=1maij
于是
∥ A ∥ 1 = max ⁡ ∥ x ∥ 1 = 1 ∥ A x ∥ 1 = max ⁡ j ∑ i = 1 m ∣ a i j ∣ \Vert A \Vert_1=\max\limits_{\Vert x \Vert_1=1} \Vert Ax \Vert_1=\max\limits_{j} \sum_{i=1}^{m}\left| a_{ij} \right| A1=x1=1maxAx1=jmaxi=1maij

(2)
∥ A ∥ 2 = max ⁡ ∥ x ∥ 2 = 1 ∥ A x ∥ 2 \Vert A \Vert_2=\max\limits_{\Vert x \Vert_2 =1} \Vert Ax \Vert_2 A2=x2=1maxAx2
因为
∥ A x ∥ 2 2 = ( A x , A x ) = ( x , A H A x ) \Vert Ax \Vert_2^2 =(Ax ,Ax)=(x,A^H Ax) Ax22=(Ax,Ax)=(x,AHAx)
显然,矩阵 A H A A^HA AHA是埃尔米特矩阵(复数版实对称矩阵),且非负,从而他的特征值都是非负实数
λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n ≥ 0 \lambda_1\ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0 λ1λ2λn0 A H A A^HA AHA的特征值,
x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn为这些特征值对应的一组标准正交特征向量,任何一个范数为 1 1 1的向量 x x x都可以表示为
x = a 1 x 1 + ⋯ a n x n x=a_1x_1+\cdots a_nx_n x=a1x1+anxn

( x , x ) = ∣ a 1 ∣ 2 + ⋯ ∣ a n ∣ 2 = 1 (x,x)=\left|a_1\right|^2+\cdots \left|a_n\right|^2=1 (x,x)=a12+an2=1
又因为
∥ A x ∥ 2 2 = ( x , A H A x ) = ( a 1 x 1 + ⋯ a n x n , λ 1 a 1 x 1 + ⋯ λ n a n x n ) = λ 1 ∣ a 1 ∣ 2 + ⋯ λ n ∣ a n ∣ 2 ≤ λ 1 ( ∣ a 1 ∣ 2 + ⋯ ∣ a n ∣ 2 ) = λ 1 = λ max ⁡ ( A H A ) \begin{aligned} &\quad \Vert Ax \Vert_2^2 \\ &=(x,A^H Ax)\\ &=(a_1x_1+\cdots a_n x_n,\lambda_1 a_1 x_1+\cdots \lambda_n a_n x_n)\\ &=\lambda_1\left|a_1\right|^2+\cdots \lambda_n \left|a_n\right|^2\\ &\le \lambda_1(\left|a_1\right|^2+\cdots \left|a_n\right|^2)\\ &=\lambda_1\\ &=\lambda_{\max}(A^HA) \end{aligned} Ax22=(x,AHAx)=(a1x1+anxn,λ1a1x1+λnanxn)=λ1a12+λnan2λ1(a12+an2)=λ1=λmax(AHA)

取向量 x = x 1 x=x_1 x=x1,有
∥ A x 1 ∥ 2 2 = ( x 1 , A H A x 1 ) = ( x 1 λ 1 x 1 ) = λ 1 ‾ ( x 1 , x 1 ) = λ 1 = λ max ⁡ ( A H A ) \begin{aligned} &\quad \Vert Ax_1 \Vert_2^2\\ &=(x_1,A^H Ax_1)\\ &=(x_1 \lambda_1 x_1)\\ &=\overline{\lambda_1}(x_1,x_1)\\ &=\lambda_1\\ &=\lambda_{\max}(A^HA) \end{aligned} Ax122=(x1,AHAx1)=(x1λ1x1)=λ1(x1,x1)=λ1=λmax(AHA)
所以
∥ A ∥ 2 = max ⁡ ∥ x ∥ 2 = 1 ∥ A x ∥ 2 = λ max ⁡ ( A H A ) \Vert A \Vert_2= \max\limits_{\Vert x \Vert_2=1}\Vert Ax \Vert_2=\sqrt{\lambda_{\max}(A^HA)} A2=x2=1maxAx2=λmax(AHA)

(3)设 ∥ x ∥ ∞ = 1 \Vert x \Vert_\infty=1 x=1,则
∥ A x ∥ ∞ = max ⁡ i ∣ ∑ j = 1 n a i j x j ∣ ≤ max ⁡ i ∑ j = 1 n ∣ a i j ∣ ∣ x j ∣ ≤ max ⁡ i ∑ j = 1 n ∣ a i j ∣ \begin{aligned} &\quad \Vert Ax \Vert_\infty\\ &=\max\limits_{i}\left|\sum_{j=1}^{n}a_{ij}x_j\right|\\ &\le \max\limits_{i}\sum_{j=1}^{n}\left|a_{ij}\right|\left|x_j\right|\\ &\le \max\limits_{i}\sum_{j=1}^{n}\left|a_{ij}\right| \end{aligned} Ax=imaxj=1naijxjimaxj=1naijxjimaxj=1naij
所以
max ⁡ ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ ≤ max ⁡ i ∑ j = 1 n ∣ a i j ∣ \max\limits_{\Vert x \Vert_\infty=1}\Vert Ax \Vert_\infty \le \max\limits_{i}\sum_{j=1}^{n}\left|a_{ij}\right| x=1maxAximaxj=1naij

∑ j = 1 n ∣ a i j ∣ \sum_{j=1}^{n}\left|a_{ij}\right| j=1naij i = i 0 i=i_0 i=i0是取到最大值,取向量
x 0 = ( x 1 , ⋯   , x n ) T x_0=(x_1,\cdots,x_n)^T x0=(x1,,xn)T
其中 x j = { ∣ a i 0 j ∣ a i 0 j , a i 0 j = 0 1 , a i 0 j = 0 x_j=\begin{cases} \frac{\left|a_{i_0 j}\right|}{a_{i_0 j}},a_{i_0 j}=0\\ 1,a_{i_0 j} =0 \end{cases} xj=ai0jai0j,ai0j=01,ai0j=0
易知
∥ x 0 ∥ ∞ = 1 \Vert x_0 \Vert_\infty=1 x0=1
且当 i = i 0 i=i_0 i=i0
∣ ∑ j = 1 n a i j x j ∣ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \left|\sum_{j=1}^{n}a_{ij}x_j\right|=\max\limits_{i}\sum_{j=1}^{n}\left|a_{ij}\right| j=1naijxj=imaxj=1naij
从而
∥ A x 0 ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \Vert Ax_0 \Vert_\infty=\max\limits_{i}\sum_{j=1}^{n}\left| a_{ij}\right| Ax0=imaxj=1naij
所以
∥ A ∥ ∞ = max ⁡ ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \Vert A \Vert_\infty=\max\limits_{\Vert x \Vert_\infty=1} \Vert Ax \Vert_\infty=\max\limits_{i}\sum_{j=1}^{n}\left| a_{ij}\right| A=x=1maxAx=imaxj=1naij

F范数性质

F范数又叫做费罗贝尼乌斯(Frobenius)范数
A ∈ C m × n A\in\mathbb{C}^{m\times n} ACm×n,而 U ∈ C m × m , V ∈ C n × n U\in \mathbb{C}^{m\times m} ,V \in \mathbb{C}^{n\times n} UCm×m,VCn×n都是酉矩阵

∥ U A ∥ F = ∥ A ∥ F = ∥ A V ∥ F \Vert UA \Vert_F= \Vert A \Vert_F= \Vert AV \Vert_F UAF=AF=AVF

证明:
A = ( α 1 , ⋯   , α n ) A=(\alpha_1,\cdots,\alpha_n) A=(α1,,αn),则
∥ U A ∥ F 2 = ∥ U ( α 1 , ⋯   , α n ) ∥ F 2 = ∑ i = 1 n ∥ U α i ∥ 2 2 = ∑ i = 1 n ∥ α i ∥ 2 2 = ∥ A ∥ F 2 \begin{aligned} &\quad \Vert UA \Vert_F^2\\ &= \Vert U(\alpha_1,\cdots ,\alpha_n) \Vert_F^2\\ &=\sum_{i=1}^{n}\Vert U\alpha_i\Vert_2^2\\ &=\sum_{i=1}^{n}\Vert\alpha_i \Vert_2^2\\ &=\Vert A \Vert_F^2 \end{aligned} UAF2=U(α1,,αn)F2=i=1nUαi22=i=1nαi22=AF2
于是
∥ U A ∥ F = ∥ A ∥ F \Vert UA \Vert_F= \Vert A \Vert_F UAF=AF

∥ A V ∥ F = ∥ ( A V ) H ∥ F = ∥ V H A H ∥ F = ∥ A H ∥ F = ∥ A ∥ F \Vert AV \Vert_F = \Vert (AV)^H \Vert_F= \Vert V^H A^H \Vert_F=\Vert A^H \Vert_F = \Vert A \Vert_F AVF=(AV)HF=VHAHF=AHF=AF

推论

A A A酉相似的矩阵的F范数相同
B = U H A U B=U^HAU B=UHAU,则 ∥ B ∥ F = ∥ A ∥ F \Vert B \Vert_F= \Vert A \Vert_F BF=AF,其中 U U U是酉矩阵

谱范数的性质和谱半径

定理1

A ∈ C m × n A\in \mathbb{C}^{m\times n} ACm×n,则
(1) ∥ A ∥ 2 = max ⁡ ∥ x ∥ 2 = ∥ y ∥ 2 = 1 ∣ y H A x ∣ , x ∈ C n , y ∈ C m \Vert A \Vert_2 =\max\limits_{\Vert x \Vert_2=\Vert y \Vert_2=1} \left| y^H Ax\right|,x \in \mathbb{C}^{n},y\in \mathbb{C}^{m} A2=x2=y2=1maxyHAx,xCn,yCm
(2) ∥ A H ∥ 2 = ∥ A ∥ 2 \Vert A^H \Vert_2= \Vert A \Vert_2 AH2=A2
(3) ∥ A H A ∥ 2 = ∥ A ∥ F 2 \Vert A^H A \Vert_2 = \Vert A\Vert_F^2 AHA2=AF2
证明:
(1)对满足 ∥ x ∥ 2 = ∥ y ∥ 2 = 1 \Vert x \Vert_2=\Vert y \Vert_2=1 x2=y2=1 x , y x,y x,y,有
∣ y H A x ∣ ≤ ∥ y ∥ 2 ∥ A x ∥ 2 ≤ ∥ A ∥ 2 \left| y^H Ax \right| \le \Vert y \Vert_2 \Vert Ax \Vert_2 \le \Vert A \Vert_2 yHAxy2Ax2A2
设有 ∥ x ∥ 2 = 1 \Vert x \Vert_2=1 x2=1,使得 ∥ A x ∥ 2 = ∥ A ∥ 2 ≠ 0 \Vert Ax \Vert_2= \Vert A \Vert_2 \neq 0 Ax2=A2=0
y = A x ∥ A x ∥ 2 y=\frac{Ax}{\Vert Ax \Vert_2} y=Ax2Ax,就有
∣ y H A x ∣ = ∥ A x ∥ 2 2 ∥ A x ∥ 2 = ∥ A x ∥ 2 = ∥ A ∥ 2 \left|y^H Ax\right|=\frac{\Vert Ax \Vert_2^2}{\Vert Ax \Vert_2}= \Vert Ax \Vert_2=\Vert A \Vert_2 yHAx=Ax2Ax22=Ax2=A2
从而
max ⁡ ∥ x ∥ 2 = ∥ y ∥ 2 = 1 ∣ y H A x ∣ = ∥ A ∥ 2 \max\limits_{\Vert x \Vert_2=\Vert y \Vert_2=1}\left| y^H Ax \right|= \Vert A \Vert_2 x2=y2=1maxyHAx=A2
(2)
∥ A ∥ 2 = max ⁡ ∥ x ∥ 2 = ∥ y ∥ 2 = 1 ∣ y H A x ∣ = max ⁡ ∥ x ∥ 2 = ∥ y ∥ 2 = 1 ∣ x H A H y ∣ = ∥ A H ∥ 2 \begin{aligned} &\quad \Vert A \Vert_2\\ &=\max\limits_{\Vert x \Vert_2=\Vert y \Vert_2=1} \left| y^H Ax \right|\\ &=\max\limits_{\Vert x \Vert_2=\Vert y \Vert_2=1}\left| x^H A^H y \right|\\ &=\Vert A^H \Vert_2 \end{aligned} A2=x2=y2=1maxyHAx=x2=y2=1maxxHAHy=AH2
(3)
∥ A H A ∥ 2 ≤ ∥ A H ∥ 2 ∥ A ∥ 2 , ∥ A H ∥ 2 = ∥ A ∥ 2 \Vert A^H A\Vert_2 \le \Vert A^H \Vert_2 \Vert A \Vert_2,\Vert A^H \Vert_2= \Vert A \Vert_2 AHA2AH2A2,AH2=A2,有
∥ A H A ∥ 2 ≤ ∥ A ∥ 2 2 \Vert A^HA \Vert_2 \le \Vert A \Vert_2^2 AHA2A22
∥ x ∥ 2 = 1 \Vert x \Vert_2=1 x2=1,使得 ∥ A x ∥ 2 = ∥ A ∥ 2 \Vert Ax \Vert_2= \Vert A \Vert_2 Ax2=A2,于是
∥ A H A ∥ 2 ≥ max ⁡ ∥ x ∥ 2 = 1 ∣ x H A H A x ∣ = max ⁡ ∥ x ∥ 2 = 1 ∥ A x ∥ 2 2 = ∥ A ∥ 2 2 \begin{aligned} &\quad \Vert A^HA \Vert_2\\ &\ge\max\limits_{\Vert x\Vert_2=1}\left|x^HA^H Ax\right|\\ &=\max\limits_{\Vert x \Vert_2=1} \Vert Ax \Vert_2^2\\ &= \Vert A \Vert_2^2 \end{aligned} AHA2x2=1maxxHAHAx=x2=1maxAx22=A22

定理2

A ∈ C m × n , U ∈ C m × n , V ∈ C n × n A\in \mathbb{C}^{m\times n},U\in \mathbb{C}^{m\times n},V \in \mathbb{C}^{n\times n} ACm×n,UCm×n,VCn×n,且 U H U = I m , V H V = I n U^HU=I_m,V^HV=I_n UHU=Im,VHV=In,则
∥ U A V ∥ 2 = ∥ A ∥ 2 \Vert UAV \Vert_2 = \Vert A \Vert_2 UAV2=A2

证明:
v = V H x , u = U y v=V^Hx,u=Uy v=VHx,u=Uy,则
∥ x ∥ 2 = 1 ⇔ ∥ v ∥ 2 = 1 \Vert x \Vert_2=1 \Leftrightarrow \Vert v \Vert_2=1 x2=1v2=1
∥ y ∥ 2 = 1 ⇔ ∥ u ∥ 2 = 1 \Vert y \Vert_2 =1 \Leftrightarrow \Vert u \Vert_2=1 y2=1u2=1
于是
∥ A ∥ 2 = max ⁡ ∥ x ∥ 2 = ∥ y ∥ 2 = 1 ∣ y H A x ∣ = max ⁡ ∥ v ∥ 2 = ∥ u ∥ 2 = 1 ∣ u H U A V v ∣ = ∥ U A V ∥ 2 \begin{aligned} &\quad \Vert A \Vert_2\\ &=\max\limits_{\Vert x \Vert_2=\Vert y \Vert_2=1}\left| y^H Ax \right|\\ &=\max \limits_{\Vert v \Vert_2 =\Vert u \Vert_2=1}\left|u^HUAVv\right|\\ &=\Vert UAV \Vert_2 \end{aligned} A2=x2=y2=1maxyHAx=v2=u2=1maxuHUAVv=UAV2

定理3

A ∈ C n × n A \in \mathbb{C}^{n\times n} ACn×n,若 ∥ A ∥ < 1 \Vert A \Vert<1 A<1,则 I − A I-A IA为非奇异矩阵,且
∥ ( I − A ) − 1 ∥ ≤ ( 1 − ∥ A ∥ ) − 1 \Vert (I-A)^{-1} \Vert\le (1- \Vert A \Vert)^{-1} (IA)1(1A)1
证明:
x x x为任一非零向量,则
∥ ( I − A ) x ∥ = ∥ x − A x ∥ ≥ ∥ x ∥ − ∥ A x ∥ ≥ ∥ x ∥ − ∥ A ∥ ∥ x ∥ = ( 1 − ∥ A ∥ ) ∥ x ∥ > 0 \begin{aligned} &\quad \Vert (I-A)x \Vert\\ &= \Vert x-Ax \Vert\\ &\ge \Vert x \Vert- \Vert Ax \Vert\\ &\ge \Vert x \Vert- \Vert A \Vert \Vert x \Vert\\ &=(1-\Vert A \Vert)\Vert x \Vert\\ &>0 \end{aligned} (IA)x=xAxxAxxAx=(1A)x>0
所以,若 x ≠ 0 x\neq 0 x=0,则 ( I − A ) x ≠ 0 (I-A)x \neq 0 (IA)x=0
从而方程
( I − A ) x = 0 (I-A)x=0 (IA)x=0
无非零解,故 I − A I-A IA非奇异
( I − A ) − 1 = ( ( I − A ) + A ) ( I − A ) − 1 = I + A ( I − A ) − 1 \begin{aligned} (I-A)^{-1}&=((I-A)+A)(I-A)^{-1}\\ &=I+A(I-A)^{-1} \end{aligned} (IA)1=((IA)+A)(IA)1=I+A(IA)1
从而
∥ ( I − A ) − 1 ∥ = ∥ I + A ( I − A ) − 1 ∥ ≤ ∥ I ∥ + ∥ A ∥ ∥ ( I − A ) − 1 ∥ = 1 + ∥ A ∥ ∥ ( I − A ) − 1 ∥ \begin{aligned} &\quad \Vert (I-A)^{-1} \Vert\\ &=\Vert I+A(I-A)^{-1} \Vert\\ &\le \Vert I \Vert + \Vert A \Vert \Vert (I-A)^{-1} \Vert\\ &=1+\Vert A \Vert \Vert (I-A)^{-1} \Vert \end{aligned} (IA)1=I+A(IA)1I+A(IA)1=1+A(IA)1
观察首尾,得到
∥ ( I − A ) − 1 ∥ ≤ ( 1 − ∥ A ∥ ) − 1 \Vert (I-A)^{-1} \Vert\le (1- \Vert A \Vert)^{-1} (IA)1(1A)1

谱半径

A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n, λ 1 , ⋯   , λ n \lambda_1,\cdots, \lambda_n λ1,,λn A A A的特征值,我们称
ρ ( A ) = max ⁡ i ∣ λ i ∣ \rho(A)=\max \limits_{i}\left|\lambda_i\right| ρ(A)=imaxλi
A A A谱半径

特征值上界

对于任意矩阵 A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n,总有
ρ ( A ) ≤ ∥ A ∥ \rho(A)\le \Vert A \Vert ρ(A)A
证明:
λ \lambda λ A A A的任一特征值, x x x为对应的特征向量,则有 A x λ x Ax\lambda x Axλx
根据相容性
∣ λ ∣ ∥ x ∥ = ∥ λ x ∥ ≤ ∥ A ∥ ∥ x ∥ \left|\lambda \right| \Vert x \Vert = \Vert \lambda x \Vert \le \Vert A \Vert \Vert x \Vert λx=λxAx
于是
∣ λ ∣ ≤ ∥ A ∥ \left|\lambda \right| \le \Vert A \Vert λA

ρ ( A ) ≤ ∥ A ∥ \rho(A) \le \Vert A \Vert ρ(A)A

定理4

如果 A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n,且 A A A是正规矩阵(包括实对称矩阵),则
ρ ( A ) = ∥ A ∥ 2 \rho(A)=\Vert A \Vert_2 ρ(A)=A2
证明:
因为是正规矩阵,存在酉矩阵 U U U,使得
U H A U = d i a g ( λ 1 , ⋯   , λ n ) = A U^H AU =diag(\lambda_1,\cdots,\lambda_n)=A UHAU=diag(λ1,,λn)=A
于是
∥ A ∥ 2 = ∥ U H A U ∥ = ∥ d i a g ( λ 1 , ⋯   , λ n ) ∥ = λ max ⁡ ( A H A ) = max ⁡ i ( λ ‾ i λ i ) = max ⁡ i ∣ λ i ∣ 2 = ρ ( A ) \begin{aligned} &\quad \Vert A \Vert_2\\ &= \Vert U^H AU \Vert\\ &=\Vert diag(\lambda_1,\cdots , \lambda_n)\Vert\\ &=\sqrt{\lambda_{\max}(A^HA)}\\ &=\sqrt{\max\limits_{i}(\overline{\lambda}_i\lambda_i)}\\ &=\sqrt{\max\limits_{i}\left|\lambda_i\right|^2}\\ &=\rho(A) \end{aligned} A2=UHAU=diag(λ1,,λn)=λmax(AHA) =imax(λiλi) =imaxλi2 =ρ(A)

定理5

对于任意非奇异矩阵 A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n, A A A的谱范数为
∥ A ∥ 2 = ρ ( A H A ) = ρ ( A A H ) \Vert A \Vert_2 = \sqrt{\rho(A^HA)}=\sqrt{\rho(AA^H)} A2=ρ(AHA) =ρ(AAH)
证明:
∥ A ∥ 2 = λ max ⁡ ( A H A ) = ρ ( A H A ) \begin{aligned} &\quad \Vert A \Vert_2\\ &=\sqrt{\lambda_{\max}(A^HA)}\\ &=\sqrt{\rho(A^HA)} \end{aligned} A2=λmax(AHA) =ρ(AHA)
因为 A A H = A ( A H A ) A − 1 AA^H=A(A^HA)A^{-1} AAH=A(AHA)A1,所以 A A H ∼ A H A AA^H\sim A^HA AAHAHA,特征值相同,从而
∥ A ∥ 2 = ρ ( A H A ) = ρ ( A A H ) \Vert A \Vert_2= \sqrt{\rho(A^HA)}=\sqrt{\rho(AA^H)} A2=ρ(AHA) =ρ(AAH)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值