1 牛顿法介绍
牛顿法是一种二阶优化技术,它将目标函数建模为二次函数。
我们知道,在梯度下降中,我们是把函数近似为一次函数。在牛顿法中,我们将其近似为二次函数:
让上式的微分为0,我们有:
如果函数本身就是二次函数的话,牛顿法一步即可 收敛;不是的话牛顿法的收敛速度也比一阶近似的梯度下降要快。
2 牛顿法的问题
牛顿法是一种二阶优化技术,它将目标函数建模为二次函数。
我们知道,在梯度下降中,我们是把函数近似为一次函数。在牛顿法中,我们将其近似为二次函数:
让上式的微分为0,我们有:
如果函数本身就是二次函数的话,牛顿法一步即可 收敛;不是的话牛顿法的收敛速度也比一阶近似的梯度下降要快。