机器学习笔记:牛顿方法

1 牛顿法介绍

牛顿法是一种二阶优化技术,它将目标函数建模为二次函数。

我们知道,在梯度下降中,我们是把函数近似为一次函数。在牛顿法中,我们将其近似为二次函数:

让上式的微分为0,我们有:

 

 如果函数本身就是二次函数的话,牛顿法一步即可 收敛;不是的话牛顿法的收敛速度也比一阶近似的梯度下降要快。

2 牛顿法的问题

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值