norm(input,
p="fro",
dim=None,
keepdim=False,
out=None,
dtype=None):
1 参数说明
参数 | 参数说明 |
input | 输入的数据 |
p | 指定的范数
fro | 默认情况,Frobenius范数  | nuc | 求核范数(矩阵奇异值的和) | p | ![\sqrt[p]{\left|x_1\right|^p+\left|x_2\right|^p+\ldots+\left|x_n\right|^p}](https://latex.csdn.net/eq?%5Csqrt%5Bp%5D%7B%5Cleft%7Cx_1%5Cright%7C%5Ep+%5Cleft%7Cx_2%5Cright%7C%5Ep+%5Cldots+%5Cleft%7Cx_n%5Cright%7C%5Ep%7D) | |
dim | 指定在哪个维度(如果不指定,那么默认是在所有维度上进行计算) |
keepdim | 是否保持维度 |
2 举例
import torch
a=torch.ones(2,2,3,4)
print(a)
'''
tensor([[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]],
[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]])
'''
print(torch.norm(a))
#tensor(6.9282)