Huggingface 笔记:大模型(Gemma2B,Gemma 7B)部署+基本使用

本文介绍了如何在HuggingFace平台上部署Gemma模型,包括申请访问权限、添加个人HuggingFacetoken,并提供了在CPU和GPU上执行文本生成,以及使用chat格式进行对话的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 部署

1.1 申请权限

在huggingface的gemma界面,点击“term”以申请gemma访问权限

https://huggingface.co/google/gemma-7b

然后接受条款

1.2 添加hugging对应的token

如果直接用gemma提供的代码,会出现如下问题:

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

这时候就需要添加自己hugging的token了:

import os
os.environ["HF_TOKEN"] = '....'

token的位置在:

2 gemma 模型官方样例

2.0 gemma介绍

  • Gemma是Google推出的一系列轻量级、最先进的开放模型,基于创建Gemini模型的相同研究和技术构建。
  • 它们是文本到文本的、仅解码器的大型语言模型,提供英语版本,具有开放的权重、预训练的变体和指令调优的变体。
  • Gemma模型非常适合执行各种文本生成任务,包括问答、摘要和推理。它们相对较小的尺寸使得可以在资源有限的环境中部署,例如笔记本电脑、桌面电脑或您自己的云基础设施,使每个人都能获得最先进的AI模型,促进创新。

2.1 文本生成

2.1.1 CPU上执行

from transformers import AutoTokenizer, AutoModelForCausalLM
'''
AutoTokenizer用于加载预训练的分词器
AutoModelForCausalLM则用于加载预训练的因果语言模型(Causal Language Model),这种模型通常用于文本生成任务
'''

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b",token='。。。')
#加载gemma-2b的预训练分词器
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b",token='。。。'
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值