论文笔记:PromptCast: A New Prompt-based Learning Paradigm for Time Series Forecasting

TKDE 2023\

1 INTRO

  • 提出了一种新的基于提示的预测范式,它不同于现有的预测方法。
    • 这是第一次以自然语言生成的方式解决一般时间序列预测问题。
  • 针对新引入的任务,论文发布了一个包含311,932个数据实例的大规模数据集(PISA)。
    • 该数据集涵盖了不同的时间序列预测场景。
  • 在拟议的PISA数据集上开发了一个基准,评估了最先进的基于数字的预测方法和流行的语言生成模型

2 方法

2.1 PISA 数据集

  • 考虑了三个来自不同领域的真实世界预测场景
    • 城市温度(CT):       

      • 这个数据源提供了全球多个城市的日平均温度(以华氏度计)。

      • 随机选择了110个国际城市来形成数据集。

    • 电力消耗负载(ECL):

      • 原始数据包括321个用户的电力消耗值(以千瓦时计)。

      • 淘汰了记录不完整的用户,并随机选择了50个在整个收集期间数据完整的用户。

      • 此外,为每个选定用户的每小时使用量整合为日使用数据。

    • SafeGraph 人类移动性数据(SG)

      • 这个来自SafeGraph的周度模式的实际人类移动性数据包含访问兴趣点(POI)的每日原始访客计数。

      • 将数据收集期从5个月扩展到近15个月,然后随机选择了324个记录完整的POI。

2.2 方法

将时间序列转化为自然语言句子,让大模型微调

3 实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值