TKDE 2023\
1 INTRO
- 提出了一种新的基于提示的预测范式,它不同于现有的预测方法。
- 这是第一次以自然语言生成的方式解决一般时间序列预测问题。
- 针对新引入的任务,论文发布了一个包含311,932个数据实例的大规模数据集(PISA)。
- 该数据集涵盖了不同的时间序列预测场景。
- 在拟议的PISA数据集上开发了一个基准,评估了最先进的基于数字的预测方法和流行的语言生成模型
2 方法
2.1 PISA 数据集
- 考虑了三个来自不同领域的真实世界预测场景
-
城市温度(CT):
-
这个数据源提供了全球多个城市的日平均温度(以华氏度计)。
-
随机选择了110个国际城市来形成数据集。
-
-
电力消耗负载(ECL):
-
原始数据包括321个用户的电力消耗值(以千瓦时计)。
-
淘汰了记录不完整的用户,并随机选择了50个在整个收集期间数据完整的用户。
-
此外,为每个选定用户的每小时使用量整合为日使用数据。
-
-
SafeGraph 人类移动性数据(SG)
-
这个来自SafeGraph的周度模式的实际人类移动性数据包含访问兴趣点(POI)的每日原始访客计数。
-
将数据收集期从5个月扩展到近15个月,然后随机选择了324个记录完整的POI。
-
-
2.2 方法
将时间序列转化为自然语言句子,让大模型微调