accelerate笔记:实验跟踪

  • Accelerate支持七种集成的跟踪器:
    • TensorBoard
    • WandB
    • CometML
    • Aim
    • MLFlow
    • ClearML
    • DVCLive
  • 要使用这些跟踪器,可以通过在 Accelerator 类的 log_with 参数中传入所选类型来实现
from accelerate import Accelerator
from accelerate.utils import LoggerType

accelerator = Accelerator(log_with="all")  
# For all available trackers in the environment

accelerator = Accelerator(log_with="wandb")

accelerator = Accelerator(log_with=["wandb", LoggerType.TENSORBOARD])
  • 实验开始时,使用 accelerator.init_trackers() 来设置项目并记录任何实验超参数
hps = {"num_iterations": 5, "learning_rate": 1e-2}
accelerator.init_trackers("my_project", config=hps)
  • 实验过程中,使用 accelerator.log() 来记录数据
    accelerator.log({"train_loss": 1.12, "valid_loss": 0.8}, step=1)
  • 实验结束时运行 accelerator.end_training() 以确保所有跟踪器能正确执行结束功能。 

完整的一套:

  • 如果跟踪器需要一个目录来保存数据(例如 TensorBoard),则可以将目录路径传给 project_dir 参数
    • ProjectConfiguration 数据类还可以结合其他配置使用,例如将 TensorBoard 数据保存在 project_dir 中,而其他日志保存在 logging_dir 参数中
accelerator = Accelerator(log_with="tensorboard", project_dir=".")

# 使用 ProjectConfiguration
config = ProjectConfiguration(project_dir=".", logging_dir="another/directory")
accelerator = Accelerator(log_with="tensorboard", project_config=config)

### 解决方案 #### 安装 Accelerate 库 为了能够在 Bash 中正常使用 `accelerate` 命令,首先需要确保 Python 环境中已经安装了 `accelerate` 库。推荐使用 pip 进行安装: ```bash pip install accelerate ``` 对于某些特定需求或环境,可能需要从 Conda 渠道安装(注意这种方式可能会遇到兼容性问题)[^1]: ```bash conda install -c conda-forge accelerate ``` #### 验证加速库安装 确认 `accelerate` 已经成功安装并能被调用: ```python import accelerate print(accelerate.__version__) ``` #### 设置环境变量 (可选) 有时为了让命令行工具正常工作,设置相应的环境变量也是必要的。虽然这一步骤不是针对 `accelerate` 的必需操作,但对于其他类似的命令行应用可能是有用的。 #### 下载配置文件 根据具体应用场景,下载合适的配置文件可以帮助更好地初始化和管理 `accelerate` 实例。例如,可以从指定位置获取默认配置文件并将其放置于合适路径下[^5]: ```bash wget https://github.com/blog-repo/path/to/default_config_accelerate.yaml kubectl create configmap accelerate-config --from-file=default_config_accelerate.yaml ``` #### 使用 Git LFS 获取大型模型资源 当涉及到处理大尺寸的数据集或是预训练好的机器学习模型时,Git Large File Storage (LFS) 是一种有效的解决方案。确保本地环境中已启用此功能,并克隆包含所需资源的远程仓库[^4]: ```bash git lfs install git clone https://huggingface.co/01-ai/Yi-6B-Chat ``` 以上步骤完成后,在终端输入 `accelerate` 即应能够识别该命令。如果仍然无法执行,则建议检查 Python 路径是否已被加入到系统的 PATH 变量之中;另外也需留意是否有多个版本冲突的情况发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值